ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Over the past twenty years, rainfall retrieval algorithms have been developed to retrieve rainfall and vertical hydrometeor structures from passive microwave observations by making use of the fact that weighting functions for various frequencies peak at different levels within a rainy atmosphere. GPROF is one of two TMI rainfall algorithms. It is physically based retrieval that finds the vertical hydrometeor profile that best fits the brightness temperatures in the available passive radiometer channels. Matching is achieved using a library of hydrometeor profiles generated by cloud-resolving models (CRMs). The hydrometeor profiles have a corresponding surface precipitation rate. The algorithm retrieves the hydrometeor profiles and associated surface rainfall using a Bayesian approach that gives the estimated expected values. The ability of CRMs to produce cloud structures that are reliable and representative of observed storms is crucial for the success of GPROF. The cloud mycrophysics are one of the keys to achieving this. In addition, CRMs have been a very useful tool for GPM-algorithm developers through Cloud-Radiation Simulations (CRS), one of the nine GPM disciplinary research themes. This paper will discuss how to generate consistent and comprehensive 4D cloud datasets from an improved (i.e., in regard to bulk and multi-moment microphysics) CRM for TRMM and GPM rainfall retrieval algorithm developers. These cloud datasets include CRM-simulated clouds and cloud systems from different geographic locations in the tropics and midlatitudes. By linking the CRM with a passive microwave radiative-transfer model and using satellite and airborne data, the performance of the "cloud physics" can be assessed and in turn modified and improved. This paper will also address how to assess and improve the performance of various latent and diabatic heating algorithms and develop an algorithm to retrieve the vertical structure of apparent moistening (Q2). Considering that the GPM will produce high (temporal and spatial) resolution heating and rainfall data, these algorithms will be used to obtain the temporal and spatial distributions of surface rainfall and the associated vertical heating and moistening profiles throughout the subtropical and midlatitudes.
    Keywords: Meteorology and Climatology
    Type: 3rd Global Precipation Mission Workshop; Jun 24, 2003 - Jun 26, 2003; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...