ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2013-11-29
    Description: N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiao -- Lu, Zhike -- Gomez, Adrian -- Hon, Gary C -- Yue, Yanan -- Han, Dali -- Fu, Ye -- Parisien, Marc -- Dai, Qing -- Jia, Guifang -- Ren, Bing -- Pan, Tao -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jan 2;505(7481):117-20. doi: 10.1038/nature12730. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, UCSD Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA [2] Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284625" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism/pharmacology ; Base Sequence ; DNA-Binding Proteins/genetics ; HeLa Cells ; Humans ; Nucleotide Motifs ; Organelles/genetics/metabolism ; Protein Binding ; Protein Biosynthesis ; *RNA Stability/drug effects ; RNA Transport ; RNA, Messenger/*chemistry/*metabolism ; RNA, Untranslated/chemistry/metabolism ; RNA-Binding Proteins/chemistry/classification/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-07-01
    Description: DNA methylation at selective cytosine residues (5-methylcytosine (5mC)) and their removal by TET-mediated DNA demethylation are critical for setting up pluripotent states in early embryonic development. TET enzymes successively convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), with 5fC and 5caC subject to removal by thymine DNA glycosylase (TDG) in conjunction with base excision repair. Early reports indicate that 5fC and 5caC could be stably detected on enhancers, promoters and gene bodies, with distinct effects on gene expression, but the mechanisms have remained elusive. Here we determined the X-ray crystal structure of yeast elongating RNA polymerase II (Pol II) in complex with a DNA template containing oxidized 5mCs, revealing specific hydrogen bonds between the 5-carboxyl group of 5caC and the conserved epi-DNA recognition loop in the polymerase. This causes a positional shift for incoming nucleoside 5'-triphosphate (NTP), thus compromising nucleotide addition. To test the implication of this structural insight in vivo, we determined the global effect of increased 5fC/5caC levels on transcription, finding that such DNA modifications indeed retarded Pol II elongation on gene bodies. These results demonstrate the functional impact of oxidized 5mCs on gene expression and suggest a novel role for Pol II as a specific and direct epigenetic sensor during transcription elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lanfeng -- Zhou, Yu -- Xu, Liang -- Xiao, Rui -- Lu, Xingyu -- Chen, Liang -- Chong, Jenny -- Li, Hairi -- He, Chuan -- Fu, Xiang-Dong -- Wang, Dong -- GM052872/GM/NIGMS NIH HHS/ -- GM102362/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- R01 GM052872/GM/NIGMS NIH HHS/ -- R01 GM102362/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 30;523(7562):621-5. doi: 10.1038/nature14482. Epub 2015 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26123024" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Cytosine/*analogs & derivatives/chemistry/metabolism ; DNA Methylation ; DNA Repair ; Epigenesis, Genetic ; Hydrogen Bonding ; Kinetics ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics/metabolism ; Substrate Specificity ; Templates, Genetic ; Thymine DNA Glycosylase/metabolism ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-02-11
    Description: Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N(6)-methyladenosine (m(6)A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N(1)-methyladenosine (m(1)A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m(1)A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m(1)A in promoting translation of methylated mRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dominissini, Dan -- Nachtergaele, Sigrid -- Moshitch-Moshkovitz, Sharon -- Peer, Eyal -- Kol, Nitzan -- Ben-Haim, Moshe Shay -- Dai, Qing -- Di Segni, Ayelet -- Salmon-Divon, Mali -- Clark, Wesley C -- Zheng, Guanqun -- Pan, Tao -- Solomon, Oz -- Eyal, Eran -- Hershkovitz, Vera -- Han, Dali -- Dore, Louis C -- Amariglio, Ninette -- Rechavi, Gideon -- He, Chuan -- GM113194/GM/NIGMS NIH HHS/ -- GM71440/GM/NIGMS NIH HHS/ -- HG006699/HG/NHGRI NIH HHS/ -- HG008688/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Feb 25;530(7591):441-6. doi: 10.1038/nature16998. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel. ; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. ; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863196" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Yi-Gang -- Shi, Wei-Feng -- Liu, Di -- Qian, Jun -- Liang, Long -- Bo, Xiao-Chen -- Liu, Jun -- Ren, Hong-Guang -- Fan, Hang -- Ni, Ming -- Sun, Yang -- Jin, Yuan -- Teng, Yue -- Li, Zhen -- Kargbo, David -- Dafae, Foday -- Kanu, Alex -- Chen, Cheng-Chao -- Lan, Zhi-Heng -- Jiang, Hui -- Luo, Yang -- Lu, Hui-Jun -- Zhang, Xiao-Guang -- Yang, Fan -- Hu, Yi -- Cao, Yu-Xi -- Deng, Yong-Qiang -- Su, Hao-Xiang -- Sun, Yu -- Liu, Wen-Sen -- Wang, Zhuang -- Wang, Cheng-Yu -- Bu, Zhao-Yang -- Guo, Zhen-Dong -- Zhang, Liu-Bo -- Nie, Wei-Min -- Bai, Chang-Qing -- Sun, Chun-Hua -- An, Xiao-Ping -- Xu, Pei-Song -- Zhang, Xiang-Li-Lan -- Huang, Yong -- Mi, Zhi-Qiang -- Yu, Dong -- Yao, Hong-Wu -- Feng, Yong -- Xia, Zhi-Ping -- Zheng, Xue-Xing -- Yang, Song-Tao -- Lu, Bing -- Jiang, Jia-Fu -- Kargbo, Brima -- He, Fu-Chu -- Gao, George F -- Cao, Wu-Chun -- China Mobile Laboratory Testing Team in Sierra Leone -- England -- Nature. 2015 Oct 22;526(7574):595. doi: 10.1038/nature15255. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308898" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-05-15
    Description: A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 x 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 x 10(-3) to 1.41 x 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Yi-Gang -- Shi, Wei-Feng -- Liu, Di -- Qian, Jun -- Liang, Long -- Bo, Xiao-Chen -- Liu, Jun -- Ren, Hong-Guang -- Fan, Hang -- Ni, Ming -- Sun, Yang -- Jin, Yuan -- Teng, Yue -- Li, Zhen -- Kargbo, David -- Dafae, Foday -- Kanu, Alex -- Chen, Cheng-Chao -- Lan, Zhi-Heng -- Jiang, Hui -- Luo, Yang -- Lu, Hui-Jun -- Zhang, Xiao-Guang -- Yang, Fan -- Hu, Yi -- Cao, Yu-Xi -- Deng, Yong-Qiang -- Su, Hao-Xiang -- Sun, Yu -- Liu, Wen-Sen -- Wang, Zhuang -- Wang, Cheng-Yu -- Bu, Zhao-Yang -- Guo, Zhen-Dong -- Zhang, Liu-Bo -- Nie, Wei-Min -- Bai, Chang-Qing -- Sun, Chun-Hua -- An, Xiao-Ping -- Xu, Pei-Song -- Zhang, Xiang-Li-Lan -- Huang, Yong -- Mi, Zhi-Qiang -- Yu, Dong -- Yao, Hong-Wu -- Feng, Yong -- Xia, Zhi-Ping -- Zheng, Xue-Xing -- Yang, Song-Tao -- Lu, Bing -- Jiang, Jia-Fu -- Kargbo, Brima -- He, Fu-Chu -- Gao, George F -- Cao, Wu-Chun -- China Mobile Laboratory Testing Team in Sierra Leone -- England -- Nature. 2015 Aug 6;524(7563):93-6. doi: 10.1038/nature14490. Epub 2015 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China. ; Institute of Pathogen Biology, Taishan Medical College, Taian 271000, China. ; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China. ; Beijing Key Laboratory of New Molecular Diagnostics Technology, Beijing 100850, China. ; Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. ; Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone. ; Sierra Leone-China Friendship Hospital, Freetown, Sierra Leone. ; BGI-Shenzhen, Shenzhen 518083, China. ; Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK. ; Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100730, China. ; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China. ; The No. 302 Hospital, Beijing 100039, China. ; The No. 307 Hospital, Beijing 100071, China. ; Department of international cooperation, National Health and Family Planning Commission, Beijing 100044, China. ; State Key Laboratory of Proteomics, Beijing 102206, China. ; 1] Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China [2] Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China [3] Chinese Center for Disease Control and Prevention, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970247" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-02-27
    Description: RNA-binding proteins control many aspects of cellular biology through binding single-stranded RNA binding motifs (RBMs). However, RBMs can be buried within their local RNA structures, thus inhibiting RNA-protein interactions. N(6)-methyladenosine (m(6)A), the most abundant and dynamic internal modification in eukaryotic messenger RNA, can be selectively recognized by the YTHDF2 protein to affect the stability of cytoplasmic mRNAs, but how m(6)A achieves its wide-ranging physiological role needs further exploration. Here we show in human cells that m(6)A controls the RNA-structure-dependent accessibility of RBMs to affect RNA-protein interactions for biological regulation; we term this mechanism 'the m(6)A-switch'. We found that m(6)A alters the local structure in mRNA and long non-coding RNA (lncRNA) to facilitate binding of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an abundant nuclear RNA-binding protein responsible for pre-mRNA processing. Combining photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and anti-m(6)A immunoprecipitation (MeRIP) approaches enabled us to identify 39,060 m(6)A-switches among HNRNPC-binding sites; and global m(6)A reduction decreased HNRNPC binding at 2,798 high-confidence m(6)A-switches. We determined that these m(6)A-switch-regulated HNRNPC-binding activities affect the abundance as well as alternative splicing of target mRNAs, demonstrating the regulatory role of m(6)A-switches on gene expression and RNA maturation. Our results illustrate how RNA-binding proteins gain regulated access to their RBMs through m(6)A-dependent RNA structural remodelling, and provide a new direction for investigating RNA-modification-coded cellular biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Nian -- Dai, Qing -- Zheng, Guanqun -- He, Chuan -- Parisien, Marc -- Pan, Tao -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- K01HG006699/HG/NHGRI NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA. ; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA [2] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [3] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA [4] Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [2] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719671" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Alternative Splicing/genetics ; Base Sequence ; Cross-Linking Reagents ; HEK293 Cells ; HeLa Cells ; Heterogeneous-Nuclear Ribonucleoprotein Group C/*metabolism ; Humans ; Immunoprecipitation ; *Nucleic Acid Conformation ; Nucleotide Motifs ; Protein Binding ; RNA, Messenger/analysis/*chemistry/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...