ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2018-03-30
    Description: Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.
    Keywords: Chemistry, Materials Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-05-26
    Description: The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO 3 ). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO 2± epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr 3 , a mechanically soft and emerging semiconducting material, onto the VO 2± , a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO 2± . This strain is large enough to trigger a structural phase transition featured by PbX 6 octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-20
    Description: Increasing fetal hemoglobin (HbF) levels in adult red blood cells provides clinical benefit to patients with sickle cell disease and some forms of β-thalassemia. To identify potentially druggable HbF regulators in adult human erythroid cells, we employed a protein kinase domain–focused CRISPR-Cas9–based genetic screen with a newly optimized single-guide RNA scaffold. The screen uncovered the heme-regulated inhibitor HRI (also known as EIF2AK1), an erythroid-specific kinase that controls protein translation, as an HbF repressor. HRI depletion markedly increased HbF production in a specific manner and reduced sickling in cultured erythroid cells. Diminished expression of the HbF repressor BCL11A accounted in large part for the effects of HRI depletion. Taken together, these results suggest HRI as a potential therapeutic target for hemoglobinopathies.
    Keywords: Medicine, Diseases, Molecular Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-02
    Description: This work demonstrates markedly modified spin dynamics of magnetic insulator (MI) by the spin momentum–locked Dirac surface states of the adjacent topological insulator (TI), which can be harnessed for spintronic applications. As the Bi concentration x is systematically tuned in 5-nm-thick (Bi x Sb 1– x ) 2 Te 3 TI films, the weight of the surface relative to bulk states peaks at x = 0.32 when the chemical potential approaches the Dirac point. At this concentration, the Gilbert damping constant of the precessing magnetization in 10-nm-thick Y 3 Fe 5 O 12 MI films in the MI/TI heterostructures is enhanced by an order of magnitude, the largest among all concentrations. In addition, the MI acquires additional strong magnetic anisotropy that favors the in-plane orientation with similar Bi concentration dependence. These extraordinary effects of the Dirac surface states distinguish TI from other materials such as heavy metals in modulating spin dynamics of the neighboring magnetic layer.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-10-06
    Description: High-energy lithium metal batteries (LMBs) are expected to play important roles in the next-generation energy storage systems. However, the uncontrolled Li dendrite growth in liquid electrolytes still impedes LMBs from authentic commercialization. Upgrading the traditional electrolyte system from liquid to solid and quasi-solid has therefore become a key issue for prospective LMBs. From this premise, it is particularly urgent to exploit facile strategies to accomplish this goal. We report that commercialized liquid electrolyte can be easily converted into a novel quasi-solid gel polymer electrolyte (GPE) via a simple and efficient in situ gelation strategy, which, in essence, is to use LiPF 6 to induce the cationic polymerization of the ether-based 1,3-dioxolane and 1,2-dimethoxyethane liquid electrolyte under ambient temperature. The newly developed GPE exhibits elevated protective effects on Li anodes and has universality for diversified cathodes including but not restricted to sulfur, olivine-type LiFePO 4 , and layered LiNi 0.6 Co 0.2 Mn 0.2 O 2 , revealing tremendous potential in promoting the large-scale application of future LMBs.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-03-18
    Description: The Rashba physics has been intensively studied in the field of spin orbitronics for the purpose of searching novel physical properties and the ferromagnetic (FM) magnetization switching for technological applications. We report our observation of the inverse Edelstein effect up to room temperature in the Rashba-split two-dimensional electron gas (2DEG) between two insulating oxides, SrTiO 3 and LaAlO 3 , with the LaAlO 3 layer thickness from 3 to 40 unit cells (UC). We further demonstrate that the spin voltage could be markedly manipulated by electric field effect for the 2DEG between SrTiO 3 and 3-UC LaAlO 3 . These results demonstrate that the Rashba-split 2DEG at the complex oxide interface can be used for efficient charge-and-spin conversion at room temperature for the generation and detection of spin current.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-02-24
    Description: Current-induced magnetization switching through spin-orbit torques is the fundamental building block of spin-orbitronics, which promises high-performance, low-power memory and logic devices. The spin-orbit torques generally arise from spin-orbit coupling of heavy metals. However, even in a heterostructure where a metallic magnet is sandwiched by two different insulators, a nonzero spin-orbit torque is expected because of the broken inversion symmetry; an electrical insulator can be a source of the spin-orbit torques. We demonstrate current-induced magnetization switching using an insulator. We show that oxygen incorporation into the most widely used spintronic material, Pt, turns the heavy metal into an electrically insulating generator of the spin-orbit torques, which enables the electrical switching of perpendicular magnetization in a ferrimagnet sandwiched by insulating oxides. We also show that the spin-orbit torques generated from the Pt oxide can be controlled electrically through voltage-driven oxygen migration. These findings open a route toward energy-efficient, voltage-programmable spin-orbit devices based on insulating metal oxides.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...