ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Meteorology and atmospheric physics 50 (1992), S. 21-30 
    ISSN: 1436-5065
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geographie , Physik
    Notizen: Summary In recent years many studies have shown the importance of treating condensation processes in a consistent manner in numerical weather prediction models. Among emerging improvements is the explicit treatment of cloud water, and in some cases precipitating water. An unresolved problem then is how to initialize the cloud water, especially since this quantity is not treated in the most commonly used analysis schemes. In this study, a method for initializing the cloud water in a numerical weather prediction (NWP) model will be presented and tested. The implications for the model's spin-up are investigated. Information from an earlier run (“first guess fields”) is used, together with satellite data. If necessary, humidity enhancement is performed where clouds are indicated by those sources. The results indicate that initialization of the cloud water field by itself does not have a large effect on the spin-up of precipitation and clouds. A much larger effect is obtained when the humidity field is enhanced. The spin-up time for precipitation is then reduced from 12 to 6 hours, while for cloud cover it is reduced to only 1–2 hours. The method is computationally very efficient, and is particularly useful over data-sparse areas, such as the oceans. An investigation of the different terms in the cloud water tendency equation is done and the results interpreted in terms of spin-up of cloud parameters. These tests confirm that the cloud water field only accounts for a small part of the spin-up effect. These also show that the production of cloud water per time step increases throughout the simulation.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. ©American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 89 (2008): 1307-1324, doi:10.1175/2008BAMS2508.1.
    Beschreibung: Greenland has a major influence on the atmospheric circulation of the North Atlantic–western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air–sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere–ocean climate system. The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts. In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.
    Beschreibung: The GFDex would not have been possible without the dedication and flexibility shown by all at the FAAM, DirectFlight, and Avalon. GFDex was funded by the Natural Environmental Research Council (NE/C003365/1), the Canadian Foundation for Climate and Atmospheric Sciences (GR-641), and the European Union Fleet for Airborne Research (EUFAR) and European Union Coordinated Observing System (EUCOS) schemes.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2000-04-01
    Print ISSN: 0148-0227
    Digitale ISSN: 2156-2202
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2008-07-14
    Beschreibung: The response of clouds to sudden decreases in the flux of galactic cosmic rays (Forbush decrease events) has been investigated using cloud products from the space-borne MODIS instrument, which has been in operation since 2000. By focusing on pristine Southern Hemisphere ocean regions we examine areas which are particularly susceptible to changes in cloud condensation nuclei (CCN) concentrations, and where a cosmic ray signal should be easier to detect than elsewhere. While previous studies on the subject have mainly considered cloud cover, the high spatial and spectral resolution of MODIS allows for a more thorough study of microphysical parameters such as cloud droplet size, cloud water content and cloud optical depth, in addition to cloud cover. Averaging the results from the 13 Forbush decrease events that were considered, no systematic correlation was found between any of the four cloud parameters and galactic cosmic radiation, with a seemingly random distribution of positive and negative correlations. When only the three Forbush decrease events with the largest amplitude are studied, the correlations fit the hypothesis better, with 8 out of 12 correlations having the expected sign. Splitting the area of study into several sub-regions, one sub-region in the Atlantic Ocean showed statistically significant correlations compatible with a cosmic ray-induced enhancement of CCN and cloud droplet number concentrations. However, the lack of correlation in any of the other 5 sub-regions suggests that this may be a statistical co-incidence. Introducing a time lag of a few days for clouds to respond to the cosmic ray signal did not change the overall results. Singling out low clouds of intermediate optical depth with large susceptibility did not lead to higher correlations. In conclusion, no response to variations in cosmic rays associated with Forbush decrease events was found in marine low clouds in remote regions using MODIS data.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2007-02-02
    Beschreibung: The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2011-02-07
    Beschreibung: We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is −0.11 Wm−2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-11-16
    Beschreibung: The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s−1. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem) indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Glacial outwash terrains located near the Mýrdalsjökull glacier are among simulated dust sources. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2011-04-19
    Beschreibung: During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the difficulty to identify a data set that most realistically represents the actual pollution state of the Arctic atmosphere.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2006-05-29
    Beschreibung: The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2006-05-29
    Beschreibung: Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities) for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and other dry deposition processes. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for the individual species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...