ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (441)
Collection
Language
  • 1
    Publication Date: 2023-12-19
    Description: The shale gas potential of Ediacaran and Lower Silurian shales from the Upper Yangtze platform is assessed in this study with a focus on the contributions of clay minerals and organic matter to sorption capacity. For this purpose, a multidisciplinary assessment was carried out using petrophysical, mineralogical, petrographic and geochemical methods. In terms of TOC contents (4.2%), brittle mineral contents (68.6%) and maximum gas storage capacities (0.054–0.251 mmol/g) Ediacaran shales from this study show comparable properties to other producing shale gas systems although the thermal maturity is extremely high (VRr = 3.6%). When compared to lower Silurian shales from the same region, it is evident that (1) deeper maximum burial and (2) a lack of silica-associated preservation of the pores resulted in a relatively lower mesopore volume, higher micropore volume fraction and lower overall porosity (Ediacaran shales: 1.4–4.6%; Silurian shales: 6.2–7.4%). Gas production is therefore retarded by poor interconnectivity of the pore system, which was qualitatively demonstrated by comparing experimental gas uptake kinetics. TOC content exhibits a prominent control on sorption capacity and micropore volume for both shales. However, different contributions of clay minerals to sorption capacity were identified. This can partly be attributed to different clay types but is likely also related to burial-induced recrystallisation and different origins of illite. Additionally, it was shown that variations in sorption capacity due to incorrect estimates of clay mineral contribution are in the same range as variations due to differences in thermal maturity. Article highlights Pore structure and gas storage characteristics are evaluated for the first time for Ediacaran Shales from the Upper Yangtze platform Due to a lower free gas storage capacity and diffusivity, the Ediacaran shale can be regarded as a less favorable shale gas prospect when compared to the Silurian shale Clay mineral contribution to sorption capacity is evaluated taking clay mineralogy into consideration Maturity-related changes of organic matter sorption capacity have been discussed on the basis of a compiled data set
    Description: RWTH Aachen University (3131)
    Keywords: ddc:552 ; Ediacaran ; Silurian ; Sorption capacity ; Pore structure ; Mineralogy ; Thermal maturity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-27
    Description: Calcareous foraminifer shells (tests) represent one of the most important archives for paleoenvironmental and paleoclimatic reconstruction. To develop a mechanistic understanding of the relationship between environmental parameters and proxy signals, knowledge of the fundamental processes operating during foraminiferal biomineralization is essential. Here, we apply microscopic and diffraction‐based methods to address the crystallographic and hierarchical structure of the test wall of different hyaline foraminifer species. Our results show that the tests are constructed from micrometer‐scale oriented mesocrystals built of nanometer‐scale entities. Based on these observations, we propose a mechanistic extension to the biomineralization model for hyaline foraminifers, centered on the formation and assembly of units of metastable carbonate phases to the final mesocrystal via a non‐classical particle attachment process, possibly facilitated by organic matter. This implies the presence of metastable precursors such as vaterite or amorphous calcium carbonate, along with phase transitions to calcite, which is relevant for the mechanistic understanding of proxy incorporation in the hyaline foraminifers.
    Description: Plain Language Summary: Foraminifers are single celled marine organisms typically half a millimeter in size, which form shells made of calcium carbonate. During their life, the chemical composition of their shells records environmental conditions. By analyzing fossil shells, past conditions can be reconstructed to understand ancient oceans and climate change. To do that correctly, we need to know exactly how foraminifers form their shell. We find that foraminifers build micrometer‐sized mesocrystals which are made of smaller building blocks. This means that the smallest building blocks form first and assemble to form a larger grain, which is oriented in a specific direction. To align all the building blocks, it is possible that they are first unstable and undergo transformation on assembly, during which their composition may change. By understanding and quantifying this process, the composition of the final fossil shell may be understood, ultimately leading to more reliable reconstructions of past environmental change.
    Description: Key Points: Hyaline foraminiferal shells are built of micrometer sized mesocrystalline units. Biomineralization likely includes the formation and assembly of nanoparticles. Nanometer sized units suggest non‐classical crystal growth.
    Description: https://doi.org/10.17617/3.D7HN3I
    Keywords: ddc:561.9 ; ddc:549
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-19
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis as input, four commonly used heat wave indices, the heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI), are computed. The extremeness of historical European heat waves between 1979 and 2019 using the four indices and different metrics is ranked. A normalisation to enable the comparison between the four indices is introduced. Additionally, a method to quantify the influence of the input parameters on heat wave magnitude is introduced. The spatio‐temporal behaviour of heat waves is assessed by spatial–temporal tracking. The areal extent, large‐scale intensity and duration are visualized using bubble plots. As expected, temperature explains the largest variance in all indices, but humidity is nearly as important in WBGT and wind speed plays a substantial role in UTCI. While the 2010 Russian heat wave is by far the most extreme event in duration and intensity in all normalized indices, the 2018 heat wave was comparable in size for EHF, WBGT and UTCI. Interestingly, the well‐known 2003 central European heat wave was only the fifth and tenth strongest in cumulative intensity in WBGT and UTCI, respectively. The June and July 2019 heat waves were very intense, but short‐lived, thus not belonging to the top heat waves in Europe when duration and areal extent are taken into account. Overall, the proposed normalized indices and the multi‐metric assessment of large‐scale heat waves allow for a more robust description of their extremeness and will be helpful to assess heat waves worldwide and in climate projections.
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis, the extremeness of European heat waves between 1979 and 2019 is ranked using four indices: heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI). In order to assess heatwaves worldwide and in climate projections, the spatial extent, large‐scale intensity and duration of heatwaves are visualized using bubble plots.
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Karlsruher Institut für Technologie http://dx.doi.org/10.13039/100009133
    Keywords: ddc:551.5 ; duration ; heat wave ; indices ; intensity ; large‐scale ; spatial extent
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Uplift of the Tian Shan range modified regional climate during Cenozoic aridification in Central Asia. This study presents facies analyses and Neogene oxygen and carbon isotopic records from magnetostratigraphically dated terrestrial sedimentary sections on the southern side of the intermontane Issyk‐Kul basin in the Kyrgyz Tian Shan and 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial ages from the southern and eastern sides of the basin. The δ〈sup〉18〈/sup〉O and δ〈sup〉13〈/sup〉C data show a positive ca. 2‰ shift in values between ca. 8 and 7 Ma and a change from a negative to a positive trend. This change is attributed to the upwind growth of the Kyrgyz, Kungey and Trans Ili (Zaili) ranges, which diverted the westerlies, thereby changing the Issyk‐Kul basin from a windward to a leeward position, enhancing aridification and establishing the modern‐day spring and summer precipitation regime within the basin. Two 4 to 5 Ma 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial ages constrain the onset of Sharpyl Dak deposition on the eastern side of the basin; southward paleocurrent directions there suggest the eastward growth of the Kungey range in the Pliocene. Increased subsidence on the southern side of the basin and local tectonically induced river system reorganization led to the commencement of lake formation at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. The transition from sandstones of the Chu sedimentary group to conglomerates of the Sharpyl Dak group, marking a change from fluvial‐alluvial deposits to a proximal alluvial fan, is dated at 2.6–2.8 Ma by 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial dating on the southern side of the basin, driven either by tectonics or Northern Hemisphere glaciation. This study concludes that the late Miocene–Pliocene northward growth of Tian Shan significantly altered environmental conditions within the range, preventing the moisture‐bearing westerlies from reaching the intermontane Issyk‐Kul basin and promoting lake formation and expansion.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The late Miocene–Pliocene northward growth of Tian Shan created an orographic barrier that diverted the moisture‐bearing westerlies and enhanced aridification in the Issyk‐Kul basin. Reorganization of the river systems and enhanced subsidence led to the formation of an internally drained lake in Pliocene. The transition from sandstone to conglomerate (Sharpyl Dak group) deposition, linked to a change in climate and/or tectonic activity, occurred diachronously within the basin.〈boxed-text position="anchor" content-type="graphic" id="bre12751-blkfxd-0001" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:0950091X:bre12751:bre12751-toc-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: University of Wollongong http://dx.doi.org/10.13039/501100001777
    Keywords: ddc:551 ; Cenozoic aridification ; Central Asia ; cosmogenic 26Al/10Be ; tectonic uplift ; westerlies ; δ18O and δ13C stable isotopes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-01
    Description: Short‐term global ensemble predictions of rainfall currently have no skill over northern tropical Africa when compared to simple climatology‐based forecasts, even after sophisticated statistical postprocessing. Here, we demonstrate that 1‐day statistical forecasts for the probability of precipitation occurrence based on a simple logistic regression model have considerable potential for improvement. The new approach we present here relies on gridded rainfall estimates from the Tropical Rainfall Measuring Mission for July‐September 1998–2017 and uses rainfall amounts from the pixels that show the highest positive and negative correlations on the previous two days as input. Forecasts using this model are reliable and have a higher resolution and better skill than climatology‐based forecasts. The good performance is related to westward propagating African easterly waves and embedded mesoscale convective systems. The statistical model is outmatched by the postprocessed dynamical forecast in the dry outer tropics only, where extratropical influences are important.
    Description: Plain Language Summary: Forecasts of precipitation for the next few days based on state‐of‐the‐art weather models are currently inaccurate over northern tropical Africa, even after systematic forecast errors are corrected statistically. In this paper, we show that we can use rainfall observations from the previous 2 days to improve 1‐day predictions of precipitation occurrence. Such an approach works well over this region, as rainfall systems tend to travel from the east to the west organized by flow patterns several kilometers above the ground, called African easterly waves. This statistical forecast model requires training over a longer time period (here 19 years) to establish robust relationships on which future predictions can be based. The input data employed are gridded rainfall estimates based on satellite data for the African summer monsoon in July to September. The new method outperforms all other methods currently available on a day‐to‐day basis over the region, except for the dry outer tropics, where influences from midlatitudes, which are better captured by weather models, become more important.
    Description: Key Points: Raw and statistically postprocessed global ensemble forecasts fail to predict West African rainfall occurrence. A logistic regression model using observations from preceding days outperforms all other types of forecasts. The skill of the statistical model is mainly related to propagating African easterly waves and mesoscale convective systems.
    Description: Deutsche Forschungsgemeinschaft
    Description: Klaus Tschira Stiftung
    Keywords: 551.5 ; forecasting ; logistic regression ; postprocessing ; precipitation ; tropical convection ; West Africa
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-25
    Description: Reliable and accurate weather forecasts, particularly those of rainfall and its extremes, have the potential to improve living conditions in densely populated southern West Africa (SWA). The limited availability of observations has long impeded a rigorous evaluation of current state-of-the-art forecast models. The field campaign of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project in June–July 2016 has created an unprecedentedly dense set of measurements from surface stations and radiosondes. Here we present results from a comprehensive evaluation of both numerical model forecasts and satellite products using these data on a regional and local level. Results reveal a substantial observational uncertainty showing considerable underestimations in satellite estimates of rainfall and low-cloud cover with little correlation at the local scale. Models have a dry bias of 0.1–1.9 mm·day−1 in rainfall and too low column relative humidity. They tend to underestimate low clouds, leading to excess surface solar radiation of 43 W·m−2. Remarkably, most models show some skill in representing regional modulations of rainfall related to synoptic-scale disturbances, while local variations in rainfall and cloudiness are hardly captured. Slightly better results are found with respect to temperature and for the post-onset rather than for the pre-onset period. Delicate local features such as the Maritime Inflow phenomenon are also rather poorly represented, leading to too cool, dry and cloudy conditions at the coast. Differences between forecast days 1 and 2 are relatively small and hardly systematic, suggesting a relatively quick error saturation. Using explicit convection leads to more realistic spatial variability in rainfall, but otherwise no marked improvement. Future work should aim at improving the subtle balance between the diurnal cycles of low clouds, surface radiation, the boundary layer and convection. Further efforts are also needed to improve the observational system beyond field campaign periods.
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-12
    Description: During the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) field campaign ∼900 radiosondes were launched from 12 stations in southern West Africa from 15 June to 31 July 2016. Subsequently, data-denial experiments were conducted using the Integrated Forecasting System of the European Centre for Medium-range Weather Forecasts (ECMWF) to assess the radiosondes' impact on the quality of analyses and forecasts. As observational reference, satellite-based estimates of rainfall and outgoing long-wave radiation (OLR) as well as the radiosonde measurements themselves are used. With regard to the analyses, the additional observations show positive impacts on winds throughout the troposphere and lower stratosphere, while large lower-tropospheric cold and dry biases are hardly reduced. Nonetheless, downstream, that is farther inland from the radiosonde stations, we find a significant increase (decrease) in low-level night-time temperatures (monsoon winds) when incorporating the DACCIWA observations, suggesting a possible linkage via weaker cold air advection from the Gulf of Guinea. The associated lower relative humidity leads to reduced cloud cover in the DACCIWA analysis. Closer to the coast and over Benin and Togo, DACCIWA observations increase low-level specific humidity and precipitable water, possibly due to changes in advection and vertical mixing. During daytime, differences between the two analyses are generally smaller at low levels. With regard to the forecasts, the impact of the additional observations is lost after a day or less. Moderate improvements occur in low-level wind and temperature but also in rainfall over the downstream Sahel, while impacts on OLR are ambiguous. The changes in precipitation appear to also affect high-level cloud cover and the tropical easterly jet. The overall rather small observation impact suggests that model and data assimilation deficits are the main limiting factors for better forecasts in West Africa. The new observations and physical understanding from DACCIWA can hopefully contribute to reducing these issues.
    Keywords: 551.6 ; data-denial experiment ; field campaign ; radiosonde measurements ; West African monsoon
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-12
    Description: The seasonal cycle of rainfall over the Greater Horn of Africa (GHA) is dominated by the latitudinal migration and activity of the tropical rain belt (TRB). The TRB exhibits high interannual variability in the GHA and the reasons for the recent dry period in the Long Rains (March–May) are poorly understood. In addition, few studies have addressed the rainfall fluctuations during the Msimu Rains (Dec.–Mar.) in the southern GHA region. Interannual variations of the seasonal cycle of the TRB between 1981 and 2018 were analysed using two statistical indices. The Rainfall Cluster Index (RCI) describes the seasonal cycle as a succession of six characteristic rainfall patterns, while the Seasonal Location Index (SLI) captures the latitudinal location of the TRB. The SLI and RCI depict the full seasonal cycle of the TRB supporting interpretations of the interannual variations and trends. The Msimu Rains are dominated by two clusters with opposite rainfall characteristics between the Congo Basin and Tanzania. The associated anomalies in moisture flux and divergence indicate variations in the location of the TRB originating from an interplay between low-level air flows from the Atlantic and Indian Oceans and tropical and subtropical teleconnections. The peak period of the Long Rains shows a complex composition of five clusters, which is tightly connected to intraseasonal and interannual variability of latitudinal locations of the TRB. A persistent location of the TRB near the equator, evidenced in a frequent occurrence of a cluster related to an anomalously weak Walker circulation, is associated with wet conditions over East Africa. Dry Long Rains are associated with strong and frequent latitudinal variations of the TRB position with a late onset and intermittent rainfall. These results offer new opportunities to understand recent variability and trends in the GHA region.
    Keywords: 551.6 ; Greater Horn of Africa ; seasonal cycle of rainfall ; ropical rain belt ; interannual variability
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-11
    Description: The El Niño phase of the El Niño Southern Oscillation (ENSO) is typically associated with below-average cool-season rainfall in southeastern Australia (SEA). However, there is also large case-to-case variability on monthly time-scales. Despite recent progress in understanding the links between remote climate drivers and this variability, the underlying dynamical processes are not fully understood. This reanalysis-based study aims to advance the dynamical understanding by quantifying the contribution of midlatitude weather systems to monthly precipitation anomalies over SEA during the austral winter–spring season. A k-means clustering reveals four rainfall anomaly patterns with above-average rainfall (Cluster 1), below-average rainfall (Cluster 2), above-average rainfall along the East Coast (Cluster 3) and along the South Coast (Cluster 4). Cluster 2 occurs most frequently during El Niño, which highlights the general suppression of SEA rainfall during these events. However, the remaining three clusters with local above-average rainfall are found in ∼52% of all El Niño months. Changes of weather system frequency determine the respective rainfall anomaly pattern. Results indicate significantly more cut-off lows and warm conveyor belts (WCBs) over SEA in El Niño Cluster 1 and significantly fewer in El Niño Cluster 2. In El Niño Cluster 3, enhanced blocking south of Australia favours cut-off lows leading to increased rainfall along the East Coast. Positive rainfall anomalies along the South Coast in El Niño Cluster 4 are associated with frontal rainfall due to an equatorward shift of the midlatitude storm track. Most of the rainfall is produced by WCBs and cut-off lows but the contributions strongly vary between the clusters. In all clusters, rainfall anomalies result from changes in rainfall frequency more than in rainfall intensity. Backward trajectories of WCB and cut-off low rainfall highlight the importance of moist air masses from the Coral Sea and the northwest coast of Australia during wet months.
    Keywords: 551.5 ; backward trajectories ; clustering ; El Niño ; rainfall decomposition ; rainfall origin ; rainfall variability ; southeastern Australia ; synoptic weather systems
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-06
    Description: Periphytic biofilms are the major resource for many herbivorous invertebrates in both marine and freshwater benthos. They are of crucial importance for benthic food webs, substrate stability, and biogeochemical processes in littoral zones. While the importance of invertebrate grazing on biofilms has been studied extensively using natural, mixed algal communities grown on artificial substrates, there is so far no method available to create defined periphyton communities for these grazing studies. The reason for this is that many benthic algae interact with co-occurring species within the extracellular polymeric substances (EPSs) that form the nonorganismic part of the biofilm. Here, we present a novel method that allows the manufacturing of defined monoculture and multispecies biofilms by using an alginate polymer as artificial EPS structure, into which algal cultures can be embedded. Using confocal laser scanning microscopy, we show that alginate effectively embeds various algal taxa in an EPS matrix that is very similar to natural biofilms. In a grazing experiment, we demonstrate that several common freshwater herbivorous invertebrates can graze these alginate biofilms efficiently. As the method is easy to handle, it allows for highly controlled feeding experiments with benthic herbivores to assess, for example, the role of algal biodiversity on the efficiency of top-down control, the effects of environmental drivers such as nutrients, salinity, or seawater acidification on biofilm community structure, and the impacts of herbivory in benthic communities.
    Keywords: 577.2 ; benthic ecology ; biofilm pads
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...