ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Uplift of the Tian Shan range modified regional climate during Cenozoic aridification in Central Asia. This study presents facies analyses and Neogene oxygen and carbon isotopic records from magnetostratigraphically dated terrestrial sedimentary sections on the southern side of the intermontane Issyk‐Kul basin in the Kyrgyz Tian Shan and 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial ages from the southern and eastern sides of the basin. The δ〈sup〉18〈/sup〉O and δ〈sup〉13〈/sup〉C data show a positive ca. 2‰ shift in values between ca. 8 and 7 Ma and a change from a negative to a positive trend. This change is attributed to the upwind growth of the Kyrgyz, Kungey and Trans Ili (Zaili) ranges, which diverted the westerlies, thereby changing the Issyk‐Kul basin from a windward to a leeward position, enhancing aridification and establishing the modern‐day spring and summer precipitation regime within the basin. Two 4 to 5 Ma 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial ages constrain the onset of Sharpyl Dak deposition on the eastern side of the basin; southward paleocurrent directions there suggest the eastward growth of the Kungey range in the Pliocene. Increased subsidence on the southern side of the basin and local tectonically induced river system reorganization led to the commencement of lake formation at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. The transition from sandstones of the Chu sedimentary group to conglomerates of the Sharpyl Dak group, marking a change from fluvial‐alluvial deposits to a proximal alluvial fan, is dated at 2.6–2.8 Ma by 〈sup〉26〈/sup〉Al/〈sup〉10〈/sup〉Be isochron burial dating on the southern side of the basin, driven either by tectonics or Northern Hemisphere glaciation. This study concludes that the late Miocene–Pliocene northward growth of Tian Shan significantly altered environmental conditions within the range, preventing the moisture‐bearing westerlies from reaching the intermontane Issyk‐Kul basin and promoting lake formation and expansion.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The late Miocene–Pliocene northward growth of Tian Shan created an orographic barrier that diverted the moisture‐bearing westerlies and enhanced aridification in the Issyk‐Kul basin. Reorganization of the river systems and enhanced subsidence led to the formation of an internally drained lake in Pliocene. The transition from sandstone to conglomerate (Sharpyl Dak group) deposition, linked to a change in climate and/or tectonic activity, occurred diachronously within the basin.〈boxed-text position="anchor" content-type="graphic" id="bre12751-blkfxd-0001" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:0950091X:bre12751:bre12751-toc-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: University of Wollongong http://dx.doi.org/10.13039/501100001777
    Keywords: ddc:551 ; Cenozoic aridification ; Central Asia ; cosmogenic 26Al/10Be ; tectonic uplift ; westerlies ; δ18O and δ13C stable isotopes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-07
    Description: Freshwater ecosystems and their associated biota have been negatively impacted by the human development of water resources. Fundamental to restoration activities for target species is an understanding of the factors affecting population decline or recovery. Within Australia’s Murray–Darling Basin, recovery efforts to address the population decline of native freshwater fish include stock enhancement, habitat restoration, and the delivery of environmental water. Essential to guiding future management actions is information to assess the efficacy of these efforts. We undertook a study to investigate whether natural spawning and recruitment, stock enhancement, or a combination of the two is contributing to sustaining populations of golden perch (Macquaria ambigua) in the highly regulated Lachlan River, Australia. Otolith microchemistry and genetic analyses were used as complementary tools to determine the source (hatchery origin or wild-spawned) of existing populations in the catchment. We identified that natural spawning and recruitment was contributing to riverine populations in some years but that populations were heavily reliant on stocking. It was not possible to distinguish hatchery and wild-born fish using genetic tools, highlighting the value of using multiple lines of evidence to establish causal mechanisms contributing to population recovery.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...