ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Strasbourg : Editions Coprur
    Associated volumes
    Call number: PIK N 456-02-0210
    In: Regionales Klimaprojekt REKLIP
    Type of Medium: Monograph available for loan
    Series Statement: Regionales Klimaprojekt REKLIP
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: MOP 47325 / Mitte
    Type of Medium: Dissertations
    Pages: 136 Seiten , Illustrationen
    Language: German
    Note: Dissertation, Darmstadt, Technische Hochschule Darmstadt, 1987
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-05
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Light‐absorbing impurities such as mineral dust can play a major role in reducing the albedo of snow surfaces. Particularly in spring, deposited dust particles lead to increased snow melt and trigger further feedbacks at the land surface and in the atmosphere. Quantifying the extent of dust‐induced variations is difficult due to high variability in the spatial distribution of mineral dust and snow. We present an extension of a fully coupled atmospheric and land surface model system to address the impact of mineral dust on the snow albedo across Eurasia. We evaluated the short‐term effects of Saharan dust in a case study. To obtain robust results, we performed an ensemble simulation followed by statistical analysis. Mountainous regions showed a strong impact of dust deposition on snow depth. We found a mean significant reduction of −1.4 cm in the Caucasus Mountains after 1 week. However, areas with flat terrain near the snow line also showed strong effects despite lower dust concentrations. Here, the feedback to dust deposition was more pronounced as increase in surface temperature and air temperature. In the region surrounding the snow line, we found an average significant surface warming of 0.9 K after 1 week. This study shows that the impact of mineral dust deposition depends on several factors. Primarily, these are altitude, slope, snow depth, and snow cover fraction. Especially in complex terrain, it is therefore necessary to use fully coupled models to investigate the effects of mineral dust on snow pack and the atmosphere.〈/p〉
    Description: Plain Language Summary: Dust particles such as Saharan dust can darken snow surfaces, leading to increased absorption of solar radiation. The result is earlier snow melt in the spring and a warming of the land surface. Predicting dust deposition and subsequent regional impacts is difficult because the distribution of snow and dust appears in complex patterns depending on the landscape. We extended an atmospheric and land surface model system to investigate the impact of Saharan dust particles across Eurasia during a Saharan dust transport event. We found that mountainous regions are particularly affected by the dust particles, leading to increased snowmelt. In addition, regions with thin and patchy snow cover show a strong response to the dust particles, mainly causing a warming of the land surface. We found that the effects of dust particles depend on different regional characteristics. Therefore, when investigating dust on snow, it is important to use model systems that represent both the atmospheric process and surface properties properly.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉There are regional effects due to the high spatial variability in mineral dust and snow properties〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Thin snow layers favor a rise in temperature, higher elevations mainly show accelerated snow melt〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We found a significant impact on surface radiation, temperature and snow cover properties〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Initiative and Networking Fund of the Helmholtz Association
    Description: https://doi.org/10.35097/1579
    Keywords: ddc:551.5 ; light‐absorbing impurities ; dust on snow ; snow albedo ; regional impact ; modeling ; ensemble simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Description: This study underlines the important role of the transported black carbon (BC) mass concentration in the West African monsoon (WAM) area. BC was measured with a micro-aethalometer integrated in the payload bay of the unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting IN situ Aerosol). As part of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project, 53 measurement flights were carried out at Savè, Benin, on 2–16 July 2016. A high variability of BC (1.79 to 2.42±0.31 µg m−3) was calculated along 155 vertical profiles that were performed below cloud base in the atmospheric boundary layer (ABL). In contrast to initial expectations of primary emissions, the vertical distribution of BC was mainly influenced by the stratification of the ABL during the WAM season. The article focuses on an event (14 and 15 July 2016) which showed distinct layers of BC in the lowermost 900 m above ground level (a.g.l.). Low concentrations of NOx and CO were sampled at the Savè supersite near the aircraft measurements and suggested a marginal impact of local sources during the case study. The lack of primary BC emissions was verified by a comparison of the measured BC with the model COSMO-ART (Consortium for Small-scale Modelling–Aerosols and Reactive Trace gases) that was applied for the field campaign period. The modelled vertical profiles of BC led to the assumption that the measured BC was already altered, as the size was mainly dominated by the accumulation mode. Further, calculated vertical transects of wind speed and BC presume that the observed BC layer was transported from the south with maritime inflow but was mixed vertically after the onset of a nocturnal low-level jet at the measurement site. This report contributes to the scope of DACCIWA by linking airborne BC data with ground observations and a model, and it illustrates the importance of a more profound understanding of the interaction between BC and the ABL in the WAM region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-03
    Description: We carried out simulations with predefined and simulated aerosol distributions in order to investigate the improvement in the forecasting capabilities of an operational weather forecast model by the use of an improved aerosol representation. This study focuses on convective cumulus clouds developing after the passage of a cold front on 25 April 2008 over Germany. The northerly flow after the cold front leads to increased sea salt aerosol concentrations compared to prefrontal conditions. High aerosol number concentrations are simulated in the interactive scenario representing typically polluted conditions. Nevertheless, due to the presence of sea salt particles, effective radii of cloud droplets reach values typical of pristine clouds (between 7 µm and 13 µm) at the same time. Compared to the predefined continental and maritime aerosol scenarios, the simulated aerosol distribution leads to a significant change in cloud properties such as cloud droplet radii and number concentrations. Averaged over the domain covered by the convective cumuli clouds, we found a systematic decrease in precipitation with increasing aerosol number concentrations. Differences in cloud cover, short wave radiation and cloud top heights are buffered by systematic differences in precipitation and the related diabatic effects. Comparisons with measured precipitation show good agreement for the interactive aerosol scenario as well as for the extreme maritime aerosol scenario. Keywords : aerosol–cloud interaction, precipitation, natural aerosol, anthropogenic aerosol, regional modelling Responsible Editor: Annica Ekman, Stockholm University, Sweden. (Published: 2 July 2014) Citation : Tellus B 2014, 66 , 22528, http://dx.doi.org/10.3402/tellusb.v66.22528
    Print ISSN: 0280-6509
    Electronic ISSN: 1600-0889
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-01
    Description: Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can consider both the effects of meteorology on air quality and the potentially important effects of atmospheric composition on weather. This paper summarizes the main conclusions from the “Symposium on Coupled Chemistry–Meteorology/Climate Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research,” which was initiated by the European COST Action ES1004 “European Framework for Online Integrated Air Quality and Meteorology Modelling (EuMetChem).” It offers a brief review of the current status of online coupled meteorology and atmospheric chemistry modeling and a survey of processes relevant to the interactions between atmospheric physics, dynamics, and composition. In addition, it highlights scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for three main application areas: air quality, meteorology (including weather prediction), and climate modeling. It presents a synthesis of scientific progress in the form of answers to nine key questions, and provides recommendations for future research directions and priorities in the development, application, and evaluation of online coupled models.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-03-01
    Print ISSN: 0378-7753
    Electronic ISSN: 1873-2755
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-07
    Description: Between June and September large amounts of biomass burning aerosol are released into the atmosphere from agricultural fires in central and southern Africa. Recent studies have suggested that this plume is carried westward over the Atlantic Ocean at altitudes between 2 and 4 km and then northward with the monsoon flow at low levels to increase the atmospheric aerosol load over coastal cities in southern West Africa (SWA), thereby exacerbating air pollution problems. However, the processes by which these fire emissions are transported into the planetary boundary layer (PBL) are still unclear. One potential factor is the large-scale subsidence related to the southern branch of the monsoon Hadley cell over the tropical Atlantic. Here we use convection-permitting model simulations with COSMO-ART to investigate for the first time the contribution of downward mixing induced by clouds, a process we refer to as downward cloud venting in contrast to the more common process of upward transport from a polluted PBL. Based on a monthly climatology, model simulations compare satisfactory with wind fields from reanalysis data, cloud observations, and satellite-retrieved carbon monoxide (CO) mixing ratio. For a case study on 2 July 2016, modelled clouds and rainfall show overall good agreement with Spinning Enhanced Visible and InfraRed Imager (SEVIRI) cloud products and Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM-IMERG) rainfall estimates. However, there is a tendency for the model to produce too much clouds and rainfall over the Gulf of Guinea. Using the CO dispersion as an indicator for the biomass burning plume, we identify individual mixing events south of the coast of Côte d'Ivoire due to midlevel convective clouds injecting parts of the biomass burning plume into the PBL. Idealized tracer experiments suggest that around 15 % of the CO mass from the 2–4 km layer is mixed below 1 km within 2 d over the Gulf of Guinea and that the magnitude of the cloud venting is modulated by the underlying sea surface temperatures. There is even stronger vertical mixing when the biomass burning plume reaches land due to daytime heating and a deeper PBL. In that case, the long-range-transported biomass burning plume is mixed with local anthropogenic emissions. Future work should provide more robust statistics on the downward cloud venting effect over the Gulf of Guinea and include aspects of aerosol deposition.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-24
    Print ISSN: 0020-7128
    Electronic ISSN: 1432-1254
    Topics: Geography , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...