ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (4)
  • 2020-2024  (4)
  • 1980-1984
Sammlung
Datenquelle
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2023-10-11
    Beschreibung: Concerns over climate change are motivated in large part because of their impact on human society. Assessing the effect of that uncertainty on specific potential impacts is demanding, since it requires a systematic survey over both climate and impacts models. We provide a comprehensive evaluation of uncertainty in projected crop yields for maize, spring and winter wheat, rice, and soybean, using a suite of 9 crop models and up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. To make this task computationally tractable, we use a new set of statistical crop model emulators. We find that climate and crop models contribute about equally to overall uncertainty. While the ranges of yield uncertainties under CMIP5 and CMIP6 projections are similar, median impact in aggregate total caloric production is typically more negative for the CMIP6 projections (+1 to -19%) than for CMIP5 (+5 to -13%). In the first half of the 21st century and for individual crops is the spread across crop models typically wider than that across climate models, but we find distinct differences between crops: globally, wheat and maize uncertainties are dominated by the crop models, but soybean and rice are more sensitive to the climate projections. Climate models with very similar global mean warming can lead to very different aggregate impacts so that climate model uncertainties remain a significant contributor to agricultural impacts uncertainty. These results show the utility of large-ensemble methods that allow comprehensively evaluating factors affecting crop yields or other impacts under climate change. The crop model ensemble used here is unbalanced and pulls the assumption that all projections are equally plausible into question. Better methods for consistent model testing, also at the level of individual processes, will have to be developed and applied by the crop modeling community.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-10-11
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-10-04
    Beschreibung: Carbon fluxes at the land‐atmosphere interface are strongly influenced by weather and climate conditions. Yet what is usually known as “climate extremes” does not always translate into very high or low carbon fluxes or so‐called “carbon extremes.” To reveal the patterns of how climate extremes influence terrestrial carbon fluxes, we analyzed the interannual variations in ecosystem carbon fluxes simulated by the Terrestrial Biosphere Models (TBMs) in the Inter‐Sectoral Impact Model Intercomparison Project. At the global level, TBMs simulated reduced ecosystem net primary productivity (NPP; 18.5 ± 9.3 g C m−2 yr−1), but enhanced heterotrophic respiration (Rh; 7 ± 4.6 g C m−2 yr−1) during extremely hot events. TBMs also simulated reduced NPP (60.9 ± 24.4 g C m−2 yr−1) and reduced Rh (16.5 ± 11.4 g C m−2 yr−1) during extreme dry events. Influences of precipitation extremes on terrestrial carbon uptake were larger in the arid/semiarid zones than other regions. During hot extremes, ecosystems in the low latitudes experienced a larger reduction in carbon uptake. However, a large fraction of carbon extremes did not occur in concert with either temperature or precipitation extremes. Rather these carbon extremes are likely to be caused by the interactive effects of the concurrent temperature and precipitation anomalies. The interactive effects showed considerable spatial variations with the largest effects on NPP in South America and Africa. Additionally, TBMs simulated a stronger sensitivity of ecosystem productivity to precipitation than satellite estimates. This study provides new insights into the complex ecosystem responses to climate extremes, especially the emergent properties of carbon dynamics resulting from compound climate extremes.
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-10-04
    Beschreibung: Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...