ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-06-01
    Print ISSN: 0266-0032
    Electronic ISSN: 1475-2743
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley on behalf of British Society of Soil Science.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Soil organic carbon ; Geographical Information Systems ; Modelling ; Carbon sequestration ; Hungarian soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil organic matter (SOM) represents a major pool of carbon within the biosphere. It is estimated at about 1400 Pg globally, which is roughly twice that in atmospheric CO2. The soil can act as both a source and a sink for carbon and nutrients. Changes in agricultural land use and climate can lead to changes in the amount of carbon held in soils, thus, affecting the fluxes of CO2 to and from the atmosphere. Some agricultural management practices will lead to a net sequestration of carbon in the soil. Regional estimates of the carbon sequestration potential of these practices are crucial if policy makers are to plan future land uses to reduce national CO2 emissions. In Europe, carbon sequestration potential has previously been estimated using data from the Global Change and Terrestrial Ecosystems Soil Organic Matter Network (GCTE SOMNET). Linear relationships between management practices and yearly changes in soil organic carbon were developed and used to estimate changes in the total carbon stock of European soils. To refine these semi-quantitative estimates, the local soil type, meteorological conditions and land use must also be taken into account. To this end, we have modified the Rothamsted Carbon Model, so that it can be used in a predictive manner, with SOMNET data. The data is then adjusted for local conditions using Geographical Information Systems databases. In this paper, we describe how these developments can be used to estimate carbon sequestration at the regional level using a dynamic simulation model linked to spatially explicit data. Some calculations of the potential effects of afforestation on soil carbon stocks in Central Hungary provide a simple example of the system in use.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 30 (2000), S. 388-398 
    ISSN: 1432-0789
    Keywords: Key words Refractory soil organic matter ; Carbon ; Modelling ; Carbon dioxide sources ; Carbon dioxide sinks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Most models for the turnover of soil organic matter (SOM) include a compartment that is either considered inert, or has a very slow turnover time (refractory SOM; RSOM). The RSOM content of soils varies markedly between sites, and knowledge of its size and variability are essential for determining whether soils behave as sources or sinks of atmospheric CO2. It has also been suggested that the accurate specification of RSOM pools is essential to modelling studies, and that uncertainty in estimates of the size of RSOM pool could be a major source of error in modelling soil organic C. In this paper, current SOM models are reviewed, and approaches to modelling RSOM and its significance are discussed. Simulations of SOM turnover for the Rothamsted Broadbalk winter wheat experiment using the Rothamsted C model and CENTURY are presented as examples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 19 (2003), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Soils can be used as a biospheric sink for carbon under Article 3.4 of the Kyoto Protocol and parties are able to use agricultural soil carbon sinks to contribute towards carbon emission reduction targets. This should be done ‘taking into account uncertainties, transparency in reporting, and verifiability’. Models are often tested against data sets of long-term changes in soil organic carbon (SOC), but most data sets have only mean SOC values available at each sample date, with no estimates of error about the mean. We show that when using data sets that do not include estimates of error about the mean, it is not possible to reduce the error (root mean squared error) between modelled and measured values below 6.8–8.5%, even with site-specific model calibration. Equivalent errors for model runs using regional default input values are 12–34%. Using error as an indicator of the certainty that can be attached to model projections, we show that a significant reduction in uncertainty is needed for Kyoto accounting. Uncertainties for modelling during the first Kyoto Commitment Period could be reduced by better replication of soil measurements at benchmark sites. This would allow model error to be separated from measurement error, which would allow more comprehensive model testing and, ultimately, more certainty to be attached to model predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 18 (2002), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Many former estimates of regional scale C sequestration potential have made use of linear regressions based on long-term experimental data, whilst some have used dynamic soil organic matter (SOM) models linked to spatial databases. Few studies have compared the two methods. We present a case study in which the potential of different land management practices to sequester carbon in soil in arable land is estimated by different methods. Two dynamic SOM models were chosen for this study, RothC (a soil process model) and CENTURY (a whole ecosystem model with a SOM module). RothC and CENTURY are the two most widely used and validated SOM models worldwide. A Geographic Information System (GIS) containing soil, land use and climate layers, was assembled for a case study in central Hungary. GIS interfaces were developed for the RothC and CENTURY models, thus linking them to the spatial datasets at the regional level. This allowed a comparison of estimates of the C sequestration potential of different land management practices obtained using the two models and using regression based approaches. Although estimates obtained by the different approaches were of the same order of magnitude, differences were observed. Some of the land management scenarios studied here showed sufficient C mitigation potential to meet Hungarian CO2 reduction commitments. For example, afforestation of 12% current arable land could sequester 0.042–0.092 Tg yr–1 in the soil alone, or 0.285–0.588 Tg C yr–1 in both soil and biomass; 1990 level CO2 emissions for the study area were 4.7 Tg C with a corresponding reduction commitment of 0.282 Tg C. It is not, however, suggested that this is the only, or the most favourable way, in which to meet the commitments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 18 (2002), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Predictive, regional use of soil organic matter (SOM) models requires evaluation of the performance of models with datasets from long-term experiments relevant to the scenarios of interest to the regional scale study, and relevant to the climate of the study region. Datasets from six long-term experiments were used to evaluate the performance of RothC and CENTURY, two of the most widely used and tested SOM models. Three types of model run were completed for each site: (1) CENTURY model alone; (2) RothC model run to fit measured SOC values, by iteratively adjusting C inputs to soil; and (3) RothC model run using C inputs derived from CENTURY runs. In general, the performance of both models was good across all datasets. The runs using RothC (iteratively changing C inputs to fit measured SOC values) tended to have the best fit to model data, since this method involved direct fitting to observed data. Carbon inputs estimated by RothC were, in general, lower than those estimated by CENTURY, since SOC in CENTURY tends to turn over faster than SOC in RothC. The runs using RothC with CENTURY C inputs tended to have the poorest fit of all, since CENTURY predicted greater C inputs than were required by RothC to maintain the same SOC content. A plausible model fit to measured SOC data may be obtained with widely differing C input values, due to differences in predicted decomposition rates between models. It remains unclear which, if either, modelling approach most closely represents reality since both C inputs to soil and decomposition rates for bulk SOM are difficult to determine experimentally. Further progress in SOM modelling can only be the result of research leading to better process understanding, both of net C inputs to soil and of SOM decomposition rates.  The use of default methods for estimating initial SOC pools in RothC and CENTURY may not always be appropriate and may require adjustment for specific sites. The simulations presented here also suggest details of SOC dynamics not shown by available measured data, especially trends between sampling intervals, and this emphasizes the importance of archived soil samples in long-term experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 20 (2004), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Field margins are a valuable resource in the farmed landscape, providing numerous environmental benefits. We present a preliminary analysis of the carbon mitigation potential of different field margin management options for Great Britain, calculated using data from long-term experiments and literature estimates. The carbon sequestration potential of the individual options investigated here varies from 0.1 to 2.4% of 1990 UK CO2-C emissions, or 0.7–20% of the Quantified Emission Limitation Reduction Commitment (QELRC). The scenarios investigated covered three possible margin widths and options for the management of margins at each width (viz. grass strips, hedgerows and tree strips). Scenarios involving margin widths of 2, 6 or 20 m would require approximately 2.3, 6.7 or 21.3% of the total arable area of Great Britain, respectively. Scenarios including tree strips offered the greatest potential for carbon sequestration, since large amounts would be accumulated in above-ground biomass in addition to that in soil. We also accounted for the possible impacts of changed land management on trace gas fluxes, which indicated that any scenario involving a change from arable to grass strip, hedgerow or tree strip would significantly reduce N2O emissions, and thus further increase carbon mitigation potential. There would also be considerable potential for including the scenarios investigated here with other strategies for the alternative management of UK arable land to identify optimal combinations. We assumed that it would take 50–100 years for soil carbon to reach a new equilibrium following a land use change. More detailed analyses need to be conducted to include environmental benefits, socioeconomic factors and the full system carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. A number of changes in agricultural land-management show some potential as carbon mitigation options. However, research has focused on CO2-carbon mitigation and has largely ignored potential effects of land management change on trace gas fluxes. In this paper, we attempt for the first time, to assess the impact of these changes on fluxes of the important agricultural greenhouse gases, methane and nitrous oxide, in the UK.The estimates presented here are based on limited evidence and have a great (unquantifiable) uncertainty associated with them, but they show that the relative importance of trace gas fluxes varies enormously among the scenarlos. In some, such as the application of sewage sludge, woodland regeneration and bioenergy production scenarios, the inclusion of estimates for trace gas fluxes makes only a small (〈10%) difference to the CO2-C mitigation potential. In the animal manure and agricultural extensification scenarios, including estimates of trace gas fluxes has a large impact, increasing the CO2-C mitigation potential by up to 50%. In the no-till scenario, the carbon mitigation potential decreases significantly due to a sharp increase in N2O emissions under no-till.When these land-management options are combined for the whole agricultural land area of the UK, including trace gases has an impact on estimated mitigation potentials, and depending upon assumptions for the animal manure scenario, the total mitigation potential either decreases by about 10% or increases by about 30%, potentially shifting the mitigation potential of the scenario closer to the EU's 8% Kyoto target for reduction of CO2-carbon emissions (12.52 Tg C yr−1 for the UK).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 16 (2000), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The soil sequestration components of recent estimates of the carbon mitigation potential of UK agricultural land were calculated on the basis of a percentage change to the soil carbon stock present in the soil. Recent data suggest that the carbon stock of soil in UK arable land has been overestimated, meaning that potential soil carbon sequestration rates were also overestimated. Here, we present a new estimate of the carbon stock in UK arable land, and present revised estimates for the carbon mitigation potential of UK agricultural land. The stock of soil organic carbon in UK arable land (0–30 cm) is estimated to be 562 Tg, about half of the previous estimate. Consequently, the soil carbon sequestration component of each mitigation option is reduced by about half of previously published values. Since above-ground carbon accumulation and fossil fuel carbon savings remain unchanged by these new soil carbon data, options with a significant non-soil carbon mitigation component are reduced by less than those resulting from soil carbon sequestration alone. The best single mitigation option (bioenergy crop production on surplus arable land) accounts for 3.5 Tg C yr−1, (2.2% of the UK's 1990 CO2-carbon emissions), whilst an optimal combined land-use mitigation option accounts for 6.1 Tg C yr−1 (3.9% of the UK's 1990 CO2-carbon emissions). These revised figures suggest that through manipulation of arable land, the UK could, at best, meet 49% of its contribution to the EU's overall Kyoto CO2-carbon emission reduction target (8% of 1990 emissions), and 31% of the greater target accepted by the UK (12.5%). Even these reduced estimates show a significant carbon mitigation potential for UK arable land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 16 (2000), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Under the Kyoto Protocol, the European Union is committed to an 8% reduction in CO2 emissions, compared to baseline (1990) levels, during the first commitment period (2008–2012). However, within the overall EU agreement, the UK is committed to a 12.5% reduction. In this paper, we estimate the carbon mitigation potential of various agricultural land-management strategies (Kyoto Article 3.4) and examine the consequences of UK and European policy options on the potential for carbon mitigation.We show that integrated agricultural land management strategies have considerable potential for carbon mitigation. Our figures suggest the following potentials (Tg yr−1) for each scenario: animal manure, 3.7; sewage sludge, 0.3; cereal straw incorporation, 1.9; no-till farming, 3.5; agricultural extensification, 3.3; natural woodland regeneration, 3.2 and bioenergy crop production, 4.1. A realistic land-use scenario combining a number of these individual management options has a mitigation potential of 10.4 Tg C yr−1 (equivalent to about 6.6% of 1990 UK CO2-carbon emissions). An important resource for carbon mitigation in agriculture is the surplus arable land, but in order to fully exploit it, policies governing the use of surplus arable land would need to be changed. Of all options examined, bioenergy crops show the greatest potential. Bioenergy crop production also shows an indefinite mitigation potential compared to other options where the potential is infinite.The UK will not attempt to meet its climate change commitments solely through changes in agricultural land-use, but since all sources of carbon mitigation will be important in meeting these commitments, agricultural options should be taken very seriously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...