ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
  • 2
    Publication Date: 2010-10-26
    Description: Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-05
    Description: Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist, but generally they do not resolve arable land into different crop types. However, the characteristic phenological behaviour of different crops affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for Central Europe based on CORINE Land Cover 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for Central Europe using statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types, taking a multiseasonal series of MERIS Normalized Difference Vegetation Index (NDVI) into account. The satellite data were used for the separation of spring and summer crops. The hydrological impact of the improved land cover map was modelled exemplarily for the Upper Danube catchment.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-01
    Electronic ISSN: 1878-0296
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-21
    Description: Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: Increasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming‐induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-03
    Description: Modern food production is spatially concentrated in global “breadbaskets.” A major unresolved question is whether these peak production regions will shift poleward as the climate warms, allowing some recovery of potential climate-related losses. While agricultural impacts studies to date have focused on currently cultivated land, the Global Gridded Crop Model Intercomparison Project (GGCMI) Phase 2 experiment allows us to assess changes in both yields and the location of peak productivity regions under warming. We examine crop responses under projected end of century warming using seven process-based models simulating five major crops (maize, rice, soybeans, and spring and winter wheat) with a variety of adaptation strategies. We find that in no-adaptation cases, when planting date and cultivar choices are held fixed, regions of peak production remain stationary and yield losses can be severe, since growing seasons contract strongly with warming. When adaptations in management practices are allowed (cultivars that retain growing season length under warming and modified planting dates), peak productivity zones shift poleward and yield losses are largely recovered. While most growing-zone shifts are ultimately limited by geography, breadbaskets studied here move poleward over 600 km on average by end of the century under RCP 8.5. These results suggest that agricultural impacts assessments can be strongly biased if restricted in spatial area or in the scope of adaptive behavior considered. Accurate evaluation of food security under climate change requires global modeling and careful treatment of adaptation strategies.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-11
    Description: Concerns over climate change are motivated in large part because of their impact on human society. Assessing the effect of that uncertainty on specific potential impacts is demanding, since it requires a systematic survey over both climate and impacts models. We provide a comprehensive evaluation of uncertainty in projected crop yields for maize, spring and winter wheat, rice, and soybean, using a suite of 9 crop models and up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. To make this task computationally tractable, we use a new set of statistical crop model emulators. We find that climate and crop models contribute about equally to overall uncertainty. While the ranges of yield uncertainties under CMIP5 and CMIP6 projections are similar, median impact in aggregate total caloric production is typically more negative for the CMIP6 projections (+1 to -19%) than for CMIP5 (+5 to -13%). In the first half of the 21st century and for individual crops is the spread across crop models typically wider than that across climate models, but we find distinct differences between crops: globally, wheat and maize uncertainties are dominated by the crop models, but soybean and rice are more sensitive to the climate projections. Climate models with very similar global mean warming can lead to very different aggregate impacts so that climate model uncertainties remain a significant contributor to agricultural impacts uncertainty. These results show the utility of large-ensemble methods that allow comprehensively evaluating factors affecting crop yields or other impacts under climate change. The crop model ensemble used here is unbalanced and pulls the assumption that all projections are equally plausible into question. Better methods for consistent model testing, also at the level of individual processes, will have to be developed and applied by the crop modeling community.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...