ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pot size  (2)
  • Reproductive effort  (2)
Collection
Publisher
Years
  • 1
    ISSN: 1432-1939
    Keywords: Allocation ; Compensatory growth ; Defoliation ; Reproductive effort ; Seed quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We tested the prediction that plants grown in elevated CO2 environments are better able to compensate for biomass lost to herbivory than plants grown in ambient CO2 environments. The herbaceous perennial Plantago lanceolata (Plantaginaceae) was grown in either near ambient (380 ppm) or enriched (700 ppm) CO2 atmospheres, and then after 4 weeks, plants experienced either 1) no defoliation; 2) every fourth leaf removed by cutting; or 3) every other leaf removed by cutting. Plants were harvested at week 13 (9 weeks after simulated herbivory treatments). Vegetative and reproductive weights were compared, and seeds were counted, weighed, and germinated to assess viability. Plants grown in enriched CO2 environments had significantly greater shoot weights, leaf areas, and root weights, yet had significantly lower reproductive weights (i.e. stalks + spikes + seeds) and produced fewer seeds, than plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plant responses to enriched CO2 atmospheres: enriched CO2-grown plants only allocated 10% of their carbon resources to reproduction whereas ambient CO2-grown plants allocated over 20%. Effects of simulated herbivory on plant performance were much less dramatic than those induced by enriched CO2 atmospheres. Leaf area removal did not reduce shoot weights or reproductive weights of plants in either CO2 treatment relative to control plants. However, plants from both CO2 treatments experienced reductions in root weights with leaf area removal, indicating that plants compensated for lost above-ground tissues, and maintained comparable levels of reproductive output and seed viability, at the expense of root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Time of reproduction ; Size at reproduction ; Reproductive effort ; Reproductive output ; Photoperiod
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We examined the effect of reproduction on growth in 33 genotypes of Plantago major and 14 genotypes of P. rugelii. These two herbaceous perennials have contrasting life histories; P. major reproduces at a smaller size, and allocates a larger proportion of its biomass to reproduction, than P. rugelii. The effect of reproduction on frowth was determined experimentally using photoperiod manipulations to control level of reproduction. The difference in growth between reproductive treatments was divided by the difference in capsule weight to produce a measure of reproductive cost per g of capsule for genotypes of the two species. In both species there was substantial variation among genotypes in the effect of reproduction on growth. Much of this variation could be correlated with differences among genotypes in the extent of reproductive investment and plant size. Cost in terms of reduction in growth per g of capsule increased with reproductive investment in P. rugelii, and with plant size in P. major. We suggest the differences between species in timing and extent of reproduction are related to the differences between species in effect of reproduction on growth. Plantago rugelii may reproduce to a lesser extent than P. major because cost per g of capsule in terms of reduced vegetative biomass, increases with reproductive output in the former species, but not in the latter. Similarly, P. major may reproduce earlier than P. rugelii because cost per g of capsule increases with plant size in P. major, but not in P. rugelii.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 94 (1993), S. 558-564 
    ISSN: 1432-1939
    Keywords: CO2 ; Nutrients ; Pot size ; Root deployment ; Root restriction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previously we examined how limited rooting space and nutrient supply influenced plant growth under elevated atmospheric CO2 concentrations (McConnaughay et al. 1993). We demonstrated that plant growth enhancement under elevated CO2 was influenced more by the concentration of nutrients added to growth containers than to either the total nutrient content per pot or amount or the dimensions of available rooting space. To gain insight into how elevated CO2 atmospheres affect how plants utilize available belowground space when rooting space and nutrient supply are limited we measured the deployment of roots within pots through time. Contrary to aboveground responses, patterns of belowground deployment were most strongly influenced by elevated CO2 in pots of different volume and shape. Further, elevated CO2 conditions interacted differently with limited belowground space for the two species we studied,Abutilon theophrasti, a C3 dicot with a deep taproot, andSetaria faberii, a C4 monocot with a shallow fibrous root system. ForSetaria, elevated CO2 increased the size of the largest region of low root density at the pot surface in larger rooting volumes independent of nutrient content, thereby decreasing their efficiency of deployment. ForAbutilon, plants responded to elevated CO2 concentrations by equalizing the pattern of deployment in all the pots. Nutrient concentration, and not pot size or shape, greatly influenced the density of root growth. Root densities forAbutilon andSetaria were similar to those observed in field conditions, for annual dicots and monocots respectively, suggesting that studies using pots may successfully mimic natural conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 94 (1993), S. 550-557 
    ISSN: 1432-1939
    Keywords: Elevated CO2 ; Growth enhancement ; Nutrients ; Pot size ; Root restriction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO2. To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C3 dicot with a deep tap root andSetaria faberii, a C4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO2-induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO2-induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO2 responses of real-world plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...