ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Growth analysis ; Competition ; C3−C4-plants ; CO2 elevation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Detailed growth analysis in conjunction with information on leaf display and nitrogen uptake was used to interpret competition between Abutilon theophrasti, a C3 annual, and Amaranthus retroflexus, a C4 annual, under ambient (350 μl l-1) and two levels of elevated (500 and 700 μl l-1) CO2. Plants were grown both individually and in competition with each other. Competition caused a reduction in growth in both species, but for different reasons. In Abutilon, decreases in leaf area ratio (LAR) were responsible, whereas decreased unit leaf rate (ULR) was involved in the case of Amaranthus. Mean canopy height was lower in Amaranthus than Abutilon which may explain the low ULR of Amaranthus in competition. The decrease in LAR of Abutilon was associated with an increase in root/shoot ratio implying that Abutilon was limited by competition for below ground resources. The root/shoot ratio of Amaranthus actually decreased with competition, and Amaranthus had a much higher rate of nitrogen uptake per unit of root than did Abutilon. These latter results suggest that Amaranthus was better able to compete for below ground resources than Abutilon. Although the growth of both species was reduced by competition, generally speaking, the growth of Amaranthus was reduced to a greater extent than that of Abutilon. Regression analysis suggests that the success of Abutilon in competition was due to its larger starting capital (seed size) which gave it an early advantage over Amaranthus. Elevated CO2 had a positive effect upon biomass in Amaranthus, and to a lesser extent, Abutilon. These effects were limited to the early part of the experiment in the case of the individually grown plants, however. Only Amaranthus exhibited a significant increase in relative growth rate (RGR). In spite of the transitory effect of CO2 upon size in individually grown plants, level of CO2 did effect final biomass of competitively grown plants. Abutilon grown in competition with Amaranthus had a greater final biomass than Amaranthus at ambient CO2 levels, but this difference disappeared to a large extent at elevated CO2. The high RGR of Amaranthus at elevated CO2 levels allowed it to overcome the difference in initial size between the two species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key wordsBetula ; Carbon dioxide ; Climate change ; heat stress ; Freezing stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Despite predictions that both atmospheric CO2 concentrations and air temperature will rise together, very limited data are currently available to assess the possible interactive effects of these two global change factors on temperate forest tree species. Using yellow birch (Betula alleghaniensis) as a model species, we studied how elevated CO2 (800 vs. 400 μl l−1) influences seedling growth and physiological responses to a 5°C increase in summer air temperatures (31/26 vs. 26/21°C day/night), and how both elevated CO2 and air temperature during the growing season influence seedling ability to survive freezing stress during the winter dormant season. Our results show that while increased temperature decreases seedling growth, temperature-induced growth reductions are significantly lower at elevated CO2 concentrations (43% vs. 73%). The amelioration of high-temperature stress was related to CO2-induced reductions in both whole-shoot dark respiration and transpiration. Our results also show that increased summer air temperature, and to a lesser degree CO2 concentration, make dormant winter buds less susceptible to freezing stress. We show the relevance of these results to models used to predict how climate change will influence future forest species distribution and productivity, without considering the direct or interactive effects of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Time of reproduction ; Size at reproduction ; Reproductive effort ; Reproductive output ; Photoperiod
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We examined the effect of reproduction on growth in 33 genotypes of Plantago major and 14 genotypes of P. rugelii. These two herbaceous perennials have contrasting life histories; P. major reproduces at a smaller size, and allocates a larger proportion of its biomass to reproduction, than P. rugelii. The effect of reproduction on frowth was determined experimentally using photoperiod manipulations to control level of reproduction. The difference in growth between reproductive treatments was divided by the difference in capsule weight to produce a measure of reproductive cost per g of capsule for genotypes of the two species. In both species there was substantial variation among genotypes in the effect of reproduction on growth. Much of this variation could be correlated with differences among genotypes in the extent of reproductive investment and plant size. Cost in terms of reduction in growth per g of capsule increased with reproductive investment in P. rugelii, and with plant size in P. major. We suggest the differences between species in timing and extent of reproduction are related to the differences between species in effect of reproduction on growth. Plantago rugelii may reproduce to a lesser extent than P. major because cost per g of capsule in terms of reduced vegetative biomass, increases with reproductive output in the former species, but not in the latter. Similarly, P. major may reproduce earlier than P. rugelii because cost per g of capsule increases with plant size in P. major, but not in P. rugelii.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Competition ; Seedlings ; Tropical trees ; CO2 elevation ; Canopy architecture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seedlings of five tropical trees, Cecropia obtusifolia, Myriocarpa longipes, Piper auritum, Senna multijuga and Trichospermum mexicanum, were grown both as individuals, and in competition with each other at ambient (350) and two levels of elevated CO2 (525 and 700 μl l-1) for a period of 111 days. Growth, allocation, canopy architecture, mid-day leaf water potential and soil moisture content were assessed three times over this period for individually grown plants, and at the end of the experiment for competitively grown plants. In addition, leaf photosynthesis and conductance were assessed for the individually grown plants midway through the experiment, and light profile curves were determined for the competitive arrays at three stages of development. Elevated CO2 did not affect photosynthesis or overall growth of the individually-grown plants but did affect canopy architecture; mean canopy height increased with CO2 in Piper and Trichospermum and decreased in Senna. Stomatal conductance decreased slightly as CO2 increased from 350 to 525 μl l-1 but this had no significant effect upon whole plant water use of leaf water potential. Soil moisture content for the individuals increased marginally as CO2 increased, but this did not occur in the competitive arrays. There was a marked effect of CO2 upon species composition of the competitive arrays; Senna decreased in importance as CO2 increased while Cecropia, Trichospermum and Piper increased in importance. Stepwise regression analysis using competitive performance as the independent variable, and the various morphological and physiological parameters measured on the individually grown plants as independent variables, suggested that canopy height was the single most important variable determining competitive ability. Also significant were photosynthetic rate (particularly at low light levels) and allocation to roots early in the experiment. Light profiles in the canopy revealed that less than 15% of incident light penetrated to the level of mean canopy height. Results suggest that competition for light was the major factor determining community composition, and that CO2 affected competitive outcome through its affect upon canopy architecture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-01-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-01-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-04-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-04-14
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-12-01
    Print ISSN: 0022-0477
    Electronic ISSN: 1365-2745
    Topics: Biology
    Published by Wiley on behalf of British Ecological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...