ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 94 (1993), S. 558-564 
    ISSN: 1432-1939
    Keywords: CO2 ; Nutrients ; Pot size ; Root deployment ; Root restriction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previously we examined how limited rooting space and nutrient supply influenced plant growth under elevated atmospheric CO2 concentrations (McConnaughay et al. 1993). We demonstrated that plant growth enhancement under elevated CO2 was influenced more by the concentration of nutrients added to growth containers than to either the total nutrient content per pot or amount or the dimensions of available rooting space. To gain insight into how elevated CO2 atmospheres affect how plants utilize available belowground space when rooting space and nutrient supply are limited we measured the deployment of roots within pots through time. Contrary to aboveground responses, patterns of belowground deployment were most strongly influenced by elevated CO2 in pots of different volume and shape. Further, elevated CO2 conditions interacted differently with limited belowground space for the two species we studied,Abutilon theophrasti, a C3 dicot with a deep taproot, andSetaria faberii, a C4 monocot with a shallow fibrous root system. ForSetaria, elevated CO2 increased the size of the largest region of low root density at the pot surface in larger rooting volumes independent of nutrient content, thereby decreasing their efficiency of deployment. ForAbutilon, plants responded to elevated CO2 concentrations by equalizing the pattern of deployment in all the pots. Nutrient concentration, and not pot size or shape, greatly influenced the density of root growth. Root densities forAbutilon andSetaria were similar to those observed in field conditions, for annual dicots and monocots respectively, suggesting that studies using pots may successfully mimic natural conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...