ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phylogeny  (35)
  • Nature Publishing Group (NPG)  (35)
  • 1
    Publication Date: 2010-03-20
    Description: Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048781/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048781/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Li-Jun -- van der Does, H Charlotte -- Borkovich, Katherine A -- Coleman, Jeffrey J -- Daboussi, Marie-Josee -- Di Pietro, Antonio -- Dufresne, Marie -- Freitag, Michael -- Grabherr, Manfred -- Henrissat, Bernard -- Houterman, Petra M -- Kang, Seogchan -- Shim, Won-Bo -- Woloshuk, Charles -- Xie, Xiaohui -- Xu, Jin-Rong -- Antoniw, John -- Baker, Scott E -- Bluhm, Burton H -- Breakspear, Andrew -- Brown, Daren W -- Butchko, Robert A E -- Chapman, Sinead -- Coulson, Richard -- Coutinho, Pedro M -- Danchin, Etienne G J -- Diener, Andrew -- Gale, Liane R -- Gardiner, Donald M -- Goff, Stephen -- Hammond-Kosack, Kim E -- Hilburn, Karen -- Hua-Van, Aurelie -- Jonkers, Wilfried -- Kazan, Kemal -- Kodira, Chinnappa D -- Koehrsen, Michael -- Kumar, Lokesh -- Lee, Yong-Hwan -- Li, Liande -- Manners, John M -- Miranda-Saavedra, Diego -- Mukherjee, Mala -- Park, Gyungsoon -- Park, Jongsun -- Park, Sook-Young -- Proctor, Robert H -- Regev, Aviv -- Ruiz-Roldan, M Carmen -- Sain, Divya -- Sakthikumar, Sharadha -- Sykes, Sean -- Schwartz, David C -- Turgeon, B Gillian -- Wapinski, Ilan -- Yoder, Olen -- Young, Sarah -- Zeng, Qiandong -- Zhou, Shiguo -- Galagan, James -- Cuomo, Christina A -- Kistler, H Corby -- Rep, Martijn -- BBS/E/C/00004973/Biotechnology and Biological Sciences Research Council/United Kingdom -- DP1 OD003958/OD/NIH HHS/ -- R01 GM086565/GM/NIGMS NIH HHS/ -- R01 GM086565-03/GM/NIGMS NIH HHS/ -- R01 HG000225/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):367-73. doi: 10.1038/nature08850.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237561" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Fungal/*genetics ; Evolution, Molecular ; Fusarium/classification/*genetics/*pathogenicity ; Genome, Fungal/*genetics ; *Genomics ; Host-Parasite Interactions/genetics ; Multigene Family/genetics ; Phenotype ; Phylogeny ; Proteome/genetics ; Sequence Analysis, DNA ; Synteny/genetics ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-04
    Description: Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 〉21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Curtis, Bruce A -- Tanifuji, Goro -- Burki, Fabien -- Gruber, Ansgar -- Irimia, Manuel -- Maruyama, Shinichiro -- Arias, Maria C -- Ball, Steven G -- Gile, Gillian H -- Hirakawa, Yoshihisa -- Hopkins, Julia F -- Kuo, Alan -- Rensing, Stefan A -- Schmutz, Jeremy -- Symeonidi, Aikaterini -- Elias, Marek -- Eveleigh, Robert J M -- Herman, Emily K -- Klute, Mary J -- Nakayama, Takuro -- Obornik, Miroslav -- Reyes-Prieto, Adrian -- Armbrust, E Virginia -- Aves, Stephen J -- Beiko, Robert G -- Coutinho, Pedro -- Dacks, Joel B -- Durnford, Dion G -- Fast, Naomi M -- Green, Beverley R -- Grisdale, Cameron J -- Hempel, Franziska -- Henrissat, Bernard -- Hoppner, Marc P -- Ishida, Ken-Ichiro -- Kim, Eunsoo -- Koreny, Ludek -- Kroth, Peter G -- Liu, Yuan -- Malik, Shehre-Banoo -- Maier, Uwe G -- McRose, Darcy -- Mock, Thomas -- Neilson, Jonathan A D -- Onodera, Naoko T -- Poole, Anthony M -- Pritham, Ellen J -- Richards, Thomas A -- Rocap, Gabrielle -- Roy, Scott W -- Sarai, Chihiro -- Schaack, Sarah -- Shirato, Shu -- Slamovits, Claudio H -- Spencer, David F -- Suzuki, Shigekatsu -- Worden, Alexandra Z -- Zauner, Stefan -- Barry, Kerrie -- Bell, Callum -- Bharti, Arvind K -- Crow, John A -- Grimwood, Jane -- Kramer, Robin -- Lindquist, Erika -- Lucas, Susan -- Salamov, Asaf -- McFadden, Geoffrey I -- Lane, Christopher E -- Keeling, Patrick J -- Gray, Michael W -- Grigoriev, Igor V -- Archibald, John M -- BB/G00885X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 6;492(7427):59-65. doi: 10.1038/nature11681. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201678" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/genetics/metabolism ; Alternative Splicing/genetics ; Cell Nucleus/*genetics ; Cercozoa/cytology/*genetics/metabolism ; Cryptophyta/cytology/*genetics/metabolism ; Cytosol/metabolism ; *Evolution, Molecular ; Gene Duplication/genetics ; Gene Transfer, Horizontal/genetics ; Genes, Essential/genetics ; Genome/*genetics ; Genome, Mitochondrial/genetics ; Genome, Plant/genetics ; Genome, Plastid/genetics ; Molecular Sequence Data ; *Mosaicism ; Phylogeny ; Protein Transport ; Proteome/genetics/metabolism ; Symbiosis/*genetics ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-14
    Description: Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Read, Betsy A -- Kegel, Jessica -- Klute, Mary J -- Kuo, Alan -- Lefebvre, Stephane C -- Maumus, Florian -- Mayer, Christoph -- Miller, John -- Monier, Adam -- Salamov, Asaf -- Young, Jeremy -- Aguilar, Maria -- Claverie, Jean-Michel -- Frickenhaus, Stephan -- Gonzalez, Karina -- Herman, Emily K -- Lin, Yao-Cheng -- Napier, Johnathan -- Ogata, Hiroyuki -- Sarno, Analissa F -- Shmutz, Jeremy -- Schroeder, Declan -- de Vargas, Colomban -- Verret, Frederic -- von Dassow, Peter -- Valentin, Klaus -- Van de Peer, Yves -- Wheeler, Glen -- Emiliania huxleyi Annotation Consortium -- Dacks, Joel B -- Delwiche, Charles F -- Dyhrman, Sonya T -- Glockner, Gernot -- John, Uwe -- Richards, Thomas -- Worden, Alexandra Z -- Zhang, Xiaoyu -- Grigoriev, Igor V -- England -- Nature. 2013 Jul 11;499(7457):209-13. doi: 10.1038/nature12221. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, California State University San Marcos, San Marcos, California 92096, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760476" target="_blank"〉PubMed〈/a〉
    Keywords: Calcification, Physiologic ; Calcium/metabolism ; Carbonic Anhydrases/genetics/metabolism ; Ecosystem ; Genome/*genetics ; Haptophyta/classification/*genetics/*isolation & purification/metabolism ; Oceans and Seas ; Phylogeny ; Phytoplankton/*genetics ; Proteome/genetics ; Seawater
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-06-04
    Description: Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cock, J Mark -- Sterck, Lieven -- Rouze, Pierre -- Scornet, Delphine -- Allen, Andrew E -- Amoutzias, Grigoris -- Anthouard, Veronique -- Artiguenave, Francois -- Aury, Jean-Marc -- Badger, Jonathan H -- Beszteri, Bank -- Billiau, Kenny -- Bonnet, Eric -- Bothwell, John H -- Bowler, Chris -- Boyen, Catherine -- Brownlee, Colin -- Carrano, Carl J -- Charrier, Benedicte -- Cho, Ga Youn -- Coelho, Susana M -- Collen, Jonas -- Corre, Erwan -- Da Silva, Corinne -- Delage, Ludovic -- Delaroque, Nicolas -- Dittami, Simon M -- Doulbeau, Sylvie -- Elias, Marek -- Farnham, Garry -- Gachon, Claire M M -- Gschloessl, Bernhard -- Heesch, Svenja -- Jabbari, Kamel -- Jubin, Claire -- Kawai, Hiroshi -- Kimura, Kei -- Kloareg, Bernard -- Kupper, Frithjof C -- Lang, Daniel -- Le Bail, Aude -- Leblanc, Catherine -- Lerouge, Patrice -- Lohr, Martin -- Lopez, Pascal J -- Martens, Cindy -- Maumus, Florian -- Michel, Gurvan -- Miranda-Saavedra, Diego -- Morales, Julia -- Moreau, Herve -- Motomura, Taizo -- Nagasato, Chikako -- Napoli, Carolyn A -- Nelson, David R -- Nyvall-Collen, Pi -- Peters, Akira F -- Pommier, Cyril -- Potin, Philippe -- Poulain, Julie -- Quesneville, Hadi -- Read, Betsy -- Rensing, Stefan A -- Ritter, Andres -- Rousvoal, Sylvie -- Samanta, Manoj -- Samson, Gaelle -- Schroeder, Declan C -- Segurens, Beatrice -- Strittmatter, Martina -- Tonon, Thierry -- Tregear, James W -- Valentin, Klaus -- von Dassow, Peter -- Yamagishi, Takahiro -- Van de Peer, Yves -- Wincker, Patrick -- England -- Nature. 2010 Jun 3;465(7298):617-21. doi: 10.1038/nature09016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC Universite Paris 6, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France. cock@sb-roscoff.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520714" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics ; Animals ; *Biological Evolution ; Eukaryota ; Evolution, Molecular ; Genome/*genetics ; Molecular Sequence Data ; Phaeophyta/*cytology/*genetics/metabolism ; Phylogeny ; Pigments, Biological/biosynthesis ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-05
    Description: Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prado-Martinez, Javier -- Sudmant, Peter H -- Kidd, Jeffrey M -- Li, Heng -- Kelley, Joanna L -- Lorente-Galdos, Belen -- Veeramah, Krishna R -- Woerner, August E -- O'Connor, Timothy D -- Santpere, Gabriel -- Cagan, Alexander -- Theunert, Christoph -- Casals, Ferran -- Laayouni, Hafid -- Munch, Kasper -- Hobolth, Asger -- Halager, Anders E -- Malig, Maika -- Hernandez-Rodriguez, Jessica -- Hernando-Herraez, Irene -- Prufer, Kay -- Pybus, Marc -- Johnstone, Laurel -- Lachmann, Michael -- Alkan, Can -- Twigg, Dorina -- Petit, Natalia -- Baker, Carl -- Hormozdiari, Fereydoun -- Fernandez-Callejo, Marcos -- Dabad, Marc -- Wilson, Michael L -- Stevison, Laurie -- Camprubi, Cristina -- Carvalho, Tiago -- Ruiz-Herrera, Aurora -- Vives, Laura -- Mele, Marta -- Abello, Teresa -- Kondova, Ivanela -- Bontrop, Ronald E -- Pusey, Anne -- Lankester, Felix -- Kiyang, John A -- Bergl, Richard A -- Lonsdorf, Elizabeth -- Myers, Simon -- Ventura, Mario -- Gagneux, Pascal -- Comas, David -- Siegismund, Hans -- Blanc, Julie -- Agueda-Calpena, Lidia -- Gut, Marta -- Fulton, Lucinda -- Tishkoff, Sarah A -- Mullikin, James C -- Wilson, Richard K -- Gut, Ivo G -- Gonder, Mary Katherine -- Ryder, Oliver A -- Hahn, Beatrice H -- Navarro, Arcadi -- Akey, Joshua M -- Bertranpetit, Jaume -- Reich, David -- Mailund, Thomas -- Schierup, Mikkel H -- Hvilsom, Christina -- Andres, Aida M -- Wall, Jeffrey D -- Bustamante, Carlos D -- Hammer, Michael F -- Eichler, Evan E -- Marques-Bonet, Tomas -- 090532/Wellcome Trust/United Kingdom -- 260372/European Research Council/International -- DP1 ES022577/ES/NIEHS NIH HHS/ -- DP1ES022577-04/DP/NCCDPHP CDC HHS/ -- GM100233/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- R01 GM095882/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01_HG005226/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 25;499(7459):471-5. doi: 10.1038/nature12228. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823723" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Animals, Wild/genetics ; Animals, Zoo/genetics ; Asia, Southeastern ; Evolution, Molecular ; Gene Flow/genetics ; *Genetic Variation ; Genetics, Population ; Genome/genetics ; Gorilla gorilla/classification/genetics ; Hominidae/classification/*genetics ; Humans ; Inbreeding ; Pan paniscus/classification/genetics ; Pan troglodytes/classification/genetics ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-09-05
    Description: Aposematism is an anti-predator defence, dependent on a predator's ability to associate unprofitable prey with a prey-borne signal. Multimodal signals should vary in efficacy according to the sensory systems of different predators; however, until now, the impact of multiple predator classes on the evolution of these signals had not been investigated. Here, using a community-level molecular phylogeny to generate phylogenetically independent contrasts, we show that warning signals of tiger moths vary according to the seasonal and daily activity patterns of birds and bats-predators with divergent sensory capacities. Many tiger moths advertise chemical defence using conspicuous colouration and/or ultrasonic clicks. During spring, when birds are active and bats less so, we found that tiger moths did not produce ultrasonic clicks. Throughout both spring and summer, tiger moths most active during the day were visually conspicuous. Those species emerging later in the season produced ultrasonic clicks; those that were most nocturnal were visually cryptic. Our results indicate that selective pressures from multiple predator classes have distinct roles in the evolution of multimodal warning displays now effective against a single predator class. We also suggest that the evolution of acoustic warning signals may lack the theoretical difficulties associated with the origination of conspicuous colouration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ratcliffe, John M -- Nydam, Marie L -- England -- Nature. 2008 Sep 4;455(7209):96-9. doi: 10.1038/nature07087.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Sound Communication, Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark. jmr@biology.sdu.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18769439" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Communication ; Animals ; Bayes Theorem ; Birds/*physiology ; Chiroptera/*physiology ; Circadian Rhythm ; Color ; Cues ; Molecular Sequence Data ; Moths/genetics/*physiology ; Ontario ; Phylogeny ; Pigmentation/*physiology ; Predatory Behavior/*physiology ; Seasons ; Ultrasonics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-04
    Description: Human immunodeficiency virus type 1 (HIV-1) sequences that pre-date the recognition of AIDS are critical to defining the time of origin and the timescale of virus evolution. A viral sequence from 1959 (ZR59) is the oldest known HIV-1 infection. Other historically documented sequences, important calibration points to convert evolutionary distance into time, are lacking, however; ZR59 is the only one sampled before 1976. Here we report the amplification and characterization of viral sequences from a Bouin's-fixed paraffin-embedded lymph node biopsy specimen obtained in 1960 from an adult female in Leopoldville, Belgian Congo (now Kinshasa, Democratic Republic of the Congo (DRC)), and we use them to conduct the first comparative evolutionary genetic study of early pre-AIDS epidemic HIV-1 group M viruses. Phylogenetic analyses position this viral sequence (DRC60) closest to the ancestral node of subtype A (excluding A2). Relaxed molecular clock analyses incorporating DRC60 and ZR59 date the most recent common ancestor of the M group to near the beginning of the twentieth century. The sizeable genetic distance between DRC60 and ZR59 directly demonstrates that diversification of HIV-1 in west-central Africa occurred long before the recognized AIDS pandemic. The recovery of viral gene sequences from decades-old paraffin-embedded tissues opens the door to a detailed palaeovirological investigation of the evolutionary history of HIV-1 that is not accessible by other methods.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worobey, Michael -- Gemmel, Marlea -- Teuwen, Dirk E -- Haselkorn, Tamara -- Kunstman, Kevin -- Bunce, Michael -- Muyembe, Jean-Jacques -- Kabongo, Jean-Marie M -- Kalengayi, Raphael M -- Van Marck, Eric -- Gilbert, M Thomas P -- Wolinsky, Steven M -- R21 AI065371/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Oct 2;455(7213):661-4. doi: 10.1038/nature07390.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. worobey@email.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18833279" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Canada ; Democratic Republic of the Congo/epidemiology ; *Evolution, Molecular ; Female ; Genetic Variation/*genetics ; HIV Infections/*epidemiology/pathology/*virology ; HIV-1/classification/*genetics/*isolation & purification ; History, 20th Century ; Humans ; Male ; Microtomy ; Molecular Sequence Data ; Paraffin Embedding ; Phylogeny ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-23
    Description: Adapiform or 'adapoid' primates first appear in the fossil record in the earliest Eocene epoch ( approximately 55 million years (Myr) ago), and were common components of Palaeogene primate communities in Europe, Asia and North America. Adapiforms are commonly referred to as the 'lemur-like' primates of the Eocene epoch, and recent phylogenetic analyses have placed adapiforms as stem members of Strepsirrhini, a primate suborder whose crown clade includes lemurs, lorises and galagos. An alternative view is that adapiforms are stem anthropoids. This debate has recently been rekindled by the description of a largely complete skeleton of the adapiform Darwinius, from the middle Eocene of Europe, which has been widely publicised as an important 'link' in the early evolution of Anthropoidea. Here we describe the complete dentition and jaw of a large-bodied adapiform (Afradapis gen. nov.) from the earliest late Eocene of Egypt ( approximately 37 Myr ago) that exhibits a striking series of derived dental and gnathic features that also occur in younger anthropoid primates-notably the earliest catarrhine ancestors of Old World monkeys and apes. Phylogenetic analysis of 360 morphological features scored across 117 living and extinct primates (including all candidate stem anthropoids) does not place adapiforms as haplorhines (that is, members of a Tarsius-Anthropoidea clade) or as stem anthropoids, but rather as sister taxa of crown Strepsirrhini; Afradapis and Darwinius are placed in a geographically widespread clade of caenopithecine adapiforms that left no known descendants. The specialized morphological features that these adapiforms share with anthropoids are therefore most parsimoniously interpreted as evolutionary convergences. As the largest non-anthropoid primate ever documented in Afro-Arabia, Afradapis nevertheless provides surprising new evidence for prosimian diversity in the Eocene of Africa, and raises the possibility that ecological competition between adapiforms and higher primates might have played an important role during the early evolution of stem and crown Anthropoidea in Afro-Arabia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seiffert, Erik R -- Perry, Jonathan M G -- Simons, Elwyn L -- Boyer, Doug M -- England -- Nature. 2009 Oct 22;461(7267):1118-21. doi: 10.1038/nature08429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794-8081, USA. erik.seiffert@stonybrook.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Dentition ; Egypt ; Mandible/anatomy & histology ; Phylogeny ; Primates/*anatomy & histology/*classification ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-06-19
    Description: Theropods have traditionally been assumed to have lost manual digits from the lateral side inward, which differs from the bilateral reduction pattern seen in other tetrapod groups. This unusual reduction pattern is clearly present in basal theropods, and has also been inferred in non-avian tetanurans based on identification of their three digits as the medial ones of the hand (I-II-III). This contradicts the many developmental studies indicating II-III-IV identities for the three manual digits of the only extant tetanurans, the birds. Here we report a new basal ceratosaur from the Oxfordian stage of the Jurassic period of China (156-161 million years ago), representing the first known Asian ceratosaur and the only known beaked, herbivorous Jurassic theropod. Most significantly, this taxon possesses a strongly reduced manual digit I, documenting a complex pattern of digital reduction within the Theropoda. Comparisons among theropod hands show that the three manual digits of basal tetanurans are similar in many metacarpal features to digits II-III-IV, but in phalangeal features to digits I-II-III, of more basal theropods. Given II-III-IV identities in avians, the simplest interpretation is that these identities were shared by all tetanurans. The transition to tetanurans involved complex changes in the hand including a shift in digit identities, with ceratosaurs displaying an intermediate condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Xing -- Clark, James M -- Mo, Jinyou -- Choiniere, Jonah -- Forster, Catherine A -- Erickson, Gregory M -- Hone, David W E -- Sullivan, Corwin -- Eberth, David A -- Nesbitt, Sterling -- Zhao, Qi -- Hernandez, Rene -- Jia, Cheng-kai -- Han, Feng-lu -- Guo, Yu -- England -- Nature. 2009 Jun 18;459(7249):940-4. doi: 10.1038/nature08124.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China. xingxu@vip.sina.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology ; China ; Dinosaurs/*anatomy & histology ; Extremities/*anatomy & histology ; *Fossils ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-02
    Description: Pheromone-based behaviours are crucial in animals from insects to mammals, and reproductive isolation is often based on pheromone differences. However, the genetic mechanisms by which pheromone signals change during the evolution of new species are largely unknown. In the sexual communication system of moths (Insecta: Lepidoptera), females emit a species-specific pheromone blend that attracts males over long distances. The European corn borer, Ostrinia nubilalis, consists of two sex pheromone races, Z and E, that use different ratios of the cis and trans isomers of acetate pheromone components. This subtle difference leads to strong reproductive isolation in the field between the two races, which could represent a first step in speciation. Female sex pheromone production and male behavioural response are under the control of different major genes, but the identity of these genes is unknown. Here we show that allelic variation in a fatty-acyl reductase gene essential for pheromone biosynthesis accounts for the phenotypic variation in female pheromone production, leading to race-specific signals. Both the cis and trans isomers of the pheromone precursors are produced by both races, but the precursors are differentially reduced to yield opposite ratios in the final pheromone blend as a result of the substrate specificity of the enzymes encoded by the Z and E alleles. This is the first functional characterization of a gene contributing to intraspecific behavioural reproductive isolation in moths, highlighting the importance of evolutionary diversification in a lepidopteran-specific family of reductases. Accumulation of substitutions in the coding region of a single biosynthetic enzyme can produce pheromone differences resulting in reproductive isolation, with speciation as a potential end result.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lassance, Jean-Marc -- Groot, Astrid T -- Lienard, Marjorie A -- Antony, Binu -- Borgwardt, Christin -- Andersson, Fredrik -- Hedenstrom, Erik -- Heckel, David G -- Lofstedt, Christer -- England -- Nature. 2010 Jul 22;466(7305):486-9. doi: 10.1038/nature09058. Epub 2010 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Lund University, 22362 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20592730" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Female ; Isomerism ; Male ; Molecular Sequence Data ; Moths/classification/enzymology/genetics/*physiology ; Oxidoreductases/*genetics/*metabolism ; Phylogeny ; RNA/analysis/genetics/metabolism ; Sex Attractants/biosynthesis/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...