ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-03-10
    Description: Familial advanced sleep phase syndrome (FASPS) is an autosomal dominant circadian rhythm variant; affected individuals are "morning larks" with a 4-hour advance of the sleep, temperature, and melatonin rhythms. Here we report localization of the FASPS gene near the telomere of chromosome 2q. A strong candidate gene (hPer2), a human homolog of the period gene in Drosophila, maps to the same locus. Affected individuals have a serine to glycine mutation within the casein kinase Iepsilon (CKIepsilon) binding region of hPER2, which causes hypophosphorylation by CKIepsilon in vitro. Thus, a variant in human sleep behavior can be attributed to a missense mutation in a clock component, hPER2, which alters the circadian period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toh, K L -- Jones, C R -- He, Y -- Eide, E J -- Hinz, W A -- Virshup, D M -- Ptacek, L J -- Fu, Y H -- HL/HD 59596/HL/NHLBI NIH HHS/ -- M01-RR00064/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1040-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11232563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Biological Clocks/*genetics ; Casein Kinases ; Chromosome Mapping ; Chromosomes, Human, Pair 2/genetics ; Circadian Rhythm/*genetics ; Exons ; Female ; Genetic Linkage ; Glycine ; Humans ; Male ; Molecular Sequence Data ; Mutation, Missense ; Nuclear Proteins/chemistry/*genetics/*metabolism ; Pedigree ; Period Circadian Proteins ; Phosphorylation ; Polymorphism, Single-Stranded Conformational ; Protein Kinases/metabolism ; Proteins/chemistry/*genetics/*metabolism ; Serine ; Sleep Disorders, Circadian Rhythm/*genetics/physiopathology ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-03-14
    Description: DNA is renowned for its double helix structure and the base pairing that enables the recognition and highly selective binding of complementary DNA strands. These features, and the ability to create DNA strands with any desired sequence of bases, have led to the use of DNA rationally to design various nanostructures and even execute molecular computations. Of the wide range of self-assembled DNA nanostructures reported, most are one- or two-dimensional. Examples of three-dimensional DNA structures include cubes, truncated octahedra, octohedra and tetrahedra, which are all comprised of many different DNA strands with unique sequences. When aiming for large structures, the need to synthesize large numbers (hundreds) of unique DNA strands poses a challenging design problem. Here, we demonstrate a simple solution to this problem: the design of basic DNA building units in such a way that many copies of identical units assemble into larger three-dimensional structures. We test this hierarchical self-assembly concept with DNA molecules that form three-point-star motifs, or tiles. By controlling the flexibility and concentration of the tiles, the one-pot assembly yields tetrahedra, dodecahedra or buckyballs that are tens of nanometres in size and comprised of four, twenty or sixty individual tiles, respectively. We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yu -- Ye, Tao -- Su, Min -- Zhang, Chuan -- Ribbe, Alexander E -- Jiang, Wen -- Mao, Chengde -- England -- Nature. 2008 Mar 13;452(7184):198-201. doi: 10.1038/nature06597.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337818" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cryoelectron Microscopy ; DNA/*chemistry/genetics/ultrastructure ; Fullerenes/chemistry ; Microscopy, Atomic Force ; Molecular Sequence Data ; Nanostructures/*chemistry/ultrastructure ; *Nucleic Acid Conformation ; Pliability
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-07-03
    Description: A proteinaceous elicitor of the plant defense reaction known as the hypersensitive response was isolated from Erwinia amylovora, the bacterium that causes fire blight of pear, apple, and other rosaceous plants. The elicitor, named harpin, is an acidic, heat-stable, cell-envelope-associated protein with an apparent molecular weight of 44 kilodaltons. Harpin caused tobacco leaf lamina to collapse and caused an increase in the pH of bathing solutions of suspension-cultured tobacco cells. The gene encoding harpin (hrpN) was located in the 40-kilobase hrp gene cluster of E. amylovora, sequenced, and mutated with Tn5tac1. The hrpN mutants were not pathogenic to pear, did not elicit the hypersensitive response, and did not produce harpin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, Z M -- Laby, R J -- Zumoff, C H -- Bauer, D W -- He, S Y -- Collmer, A -- Beer, S V -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, Cornell University, Ithaca, NY 14853.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621099" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Outer Membrane Proteins ; Bacterial Proteins/*genetics/isolation & purification/metabolism ; Cells, Cultured ; Erwinia/genetics/pathogenicity/*physiology ; Escherichia coli/genetics ; *Genes, Bacterial ; Membrane Proteins/*genetics/isolation & purification/metabolism ; Molecular Sequence Data ; *Multigene Family ; Plants, Toxic ; Restriction Mapping ; Tobacco/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-12-02
    Description: We describe a transgenesis platform for Drosophila melanogaster that integrates three recently developed technologies: a conditionally amplifiable bacterial artificial chromosome (BAC), recombineering, and bacteriophage PhiC31-mediated transgenesis. The BAC is maintained at low copy number, facilitating plasmid maintenance and recombineering, but is induced to high copy number for plasmid isolation. Recombineering allows gap repair and mutagenesis in bacteria. Gap repair efficiently retrieves DNA fragments up to 133 kilobases long from P1 or BAC clones. PhiC31-mediated transgenesis integrates these large DNA fragments at specific sites in the genome, allowing the rescue of lethal mutations in the corresponding genes. This transgenesis platform should greatly facilitate structure/function analyses of most Drosophila genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venken, Koen J T -- He, Yuchun -- Hoskins, Roger A -- Bellen, Hugo J -- GM067858-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1747-51. Epub 2006 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138868" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Chromosomes, Artificial, Bacterial ; Cloning, Molecular/*methods ; DNA Repair ; *DNA Transposable Elements ; Drosophila melanogaster/*genetics ; *Gene Transfer Techniques ; Genes, Insect ; Genetic Vectors ; Molecular Sequence Data ; Mutagenesis ; Plasmids ; Recombination, Genetic ; Siphoviridae/*genetics ; Transgenes ; Transposases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-08-15
    Description: Sleep deprivation can impair human health and performance. Habitual total sleep time and homeostatic sleep response to sleep deprivation are quantitative traits in humans. Genetic loci for these traits have been identified in model organisms, but none of these potential animal models have a corresponding human genotype and phenotype. We have identified a mutation in a transcriptional repressor (hDEC2-P385R) that is associated with a human short sleep phenotype. Activity profiles and sleep recordings of transgenic mice carrying this mutation showed increased vigilance time and less sleep time than control mice in a zeitgeber time- and sleep deprivation-dependent manner. These mice represent a model of human sleep homeostasis that provides an opportunity to probe the effect of sleep on human physical and mental health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Ying -- Jones, Christopher R -- Fujiki, Nobuhiro -- Xu, Ying -- Guo, Bin -- Holder, Jimmy L Jr -- Rossner, Moritz J -- Nishino, Seiji -- Fu, Ying-Hui -- HL059596/HL/NHLBI NIH HHS/ -- MH074924/MH/NIMH NIH HHS/ -- R01 HL059596/HL/NHLBI NIH HHS/ -- R01 HL059596-09/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 14;325(5942):866-70. doi: 10.1126/science.1174443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California at San Francisco, Mission Bay, 1550 Fourth Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19679812" target="_blank"〉PubMed〈/a〉
    Keywords: Activity Cycles/genetics ; Adolescent ; Adult ; Aged ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; Basic Helix-Loop-Helix Transcription Factors/chemistry/*genetics/physiology ; Child ; Circadian Rhythm/genetics ; Drosophila/genetics ; Electroencephalography ; Electromyography ; Female ; Homeostasis ; Humans ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Middle Aged ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Sleep/*genetics/physiology ; Sleep Deprivation ; Sleep, REM/genetics/physiology ; Transcription Factors/chemistry/genetics/physiology ; Wakefulness
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-11-01
    Description: The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a protein found in histone deacetylase complexes in mammals. Lesions in FLD result in hyperacetylation of histones in FLC chromatin, up-regulation of FLC expression, and extremely delayed flowering. Thus, the autonomous pathway regulates flowering in part by histone deacetylation. However, not all autonomous-pathway mutants exhibit FLC hyperacetylation, indicating that multiple means exist by which this pathway represses FLC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuehui -- Michaels, Scott D -- Amasino, Richard M -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1751-4. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593187" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Genes, Plant ; Histone Deacetylases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Humans ; Introns ; MADS Domain Proteins/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/chemistry/metabolism ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-12
    Description: Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhiqiang -- Zhang, Wei -- He, Ye -- Gorczyca, David -- Xiang, Yang -- Cheng, Li E -- Meltzer, Shan -- Jan, Lily Yeh -- Jan, Yuh Nung -- 5R01MH084234/MH/NIMH NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 MH084234/MH/NIMH NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- R37NS040929/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 10;493(7431):221-5. doi: 10.1038/nature11685. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Dendrites/physiology ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/cytology/growth & development/*physiology ; Larva/cytology/physiology ; Mechanotransduction, Cellular/*physiology ; Molecular Sequence Data ; Mutation ; Protein Subunits/chemistry/genetics/*metabolism ; Sequence Alignment ; Touch/*physiology ; Transient Receptor Potential Channels/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-12
    Description: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potato Genome Sequencing Consortium -- Xu, Xun -- Pan, Shengkai -- Cheng, Shifeng -- Zhang, Bo -- Mu, Desheng -- Ni, Peixiang -- Zhang, Gengyun -- Yang, Shuang -- Li, Ruiqiang -- Wang, Jun -- Orjeda, Gisella -- Guzman, Frank -- Torres, Michael -- Lozano, Roberto -- Ponce, Olga -- Martinez, Diana -- De la Cruz, German -- Chakrabarti, S K -- Patil, Virupaksh U -- Skryabin, Konstantin G -- Kuznetsov, Boris B -- Ravin, Nikolai V -- Kolganova, Tatjana V -- Beletsky, Alexey V -- Mardanov, Andrei V -- Di Genova, Alex -- Bolser, Daniel M -- Martin, David M A -- Li, Guangcun -- Yang, Yu -- Kuang, Hanhui -- Hu, Qun -- Xiong, Xingyao -- Bishop, Gerard J -- Sagredo, Boris -- Mejia, Nilo -- Zagorski, Wlodzimierz -- Gromadka, Robert -- Gawor, Jan -- Szczesny, Pawel -- Huang, Sanwen -- Zhang, Zhonghua -- Liang, Chunbo -- He, Jun -- Li, Ying -- He, Ying -- Xu, Jianfei -- Zhang, Youjun -- Xie, Binyan -- Du, Yongchen -- Qu, Dongyu -- Bonierbale, Merideth -- Ghislain, Marc -- Herrera, Maria del Rosario -- Giuliano, Giovanni -- Pietrella, Marco -- Perrotta, Gaetano -- Facella, Paolo -- O'Brien, Kimberly -- Feingold, Sergio E -- Barreiro, Leandro E -- Massa, Gabriela A -- Diambra, Luis -- Whitty, Brett R -- Vaillancourt, Brieanne -- Lin, Haining -- Massa, Alicia N -- Geoffroy, Michael -- Lundback, Steven -- DellaPenna, Dean -- Buell, C Robin -- Sharma, Sanjeev Kumar -- Marshall, David F -- Waugh, Robbie -- Bryan, Glenn J -- Destefanis, Marialaura -- Nagy, Istvan -- Milbourne, Dan -- Thomson, Susan J -- Fiers, Mark -- Jacobs, Jeanne M E -- Nielsen, Kare L -- Sonderkaer, Mads -- Iovene, Marina -- Torres, Giovana A -- Jiang, Jiming -- Veilleux, Richard E -- Bachem, Christian W B -- de Boer, Jan -- Borm, Theo -- Kloosterman, Bjorn -- van Eck, Herman -- Datema, Erwin -- Hekkert, Bas te Lintel -- Goverse, Aska -- van Ham, Roeland C H J -- Visser, Richard G F -- BB/F012640/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F012640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT 083481/Wellcome Trust/United Kingdom -- England -- Nature. 2011 Jul 10;475(7355):189-95. doi: 10.1038/nature10158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Chinese Ministry of Agricultural, Key Lab of Genomics, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21743474" target="_blank"〉PubMed〈/a〉
    Keywords: Evolution, Molecular ; Gene Duplication ; Gene Expression Regulation, Plant ; Genes, Plant/genetics ; Genetic Variation ; Genome, Plant/*genetics ; *Genomics ; Haplotypes/genetics ; Heterozygote ; Homozygote ; Immunity, Innate ; Inbreeding ; Molecular Sequence Annotation ; Molecular Sequence Data ; Plant Diseases/genetics ; Ploidies ; Solanum tuberosum/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-21
    Description: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guofan -- Fang, Xiaodong -- Guo, Ximing -- Li, Li -- Luo, Ruibang -- Xu, Fei -- Yang, Pengcheng -- Zhang, Linlin -- Wang, Xiaotong -- Qi, Haigang -- Xiong, Zhiqiang -- Que, Huayong -- Xie, Yinlong -- Holland, Peter W H -- Paps, Jordi -- Zhu, Yabing -- Wu, Fucun -- Chen, Yuanxin -- Wang, Jiafeng -- Peng, Chunfang -- Meng, Jie -- Yang, Lan -- Liu, Jun -- Wen, Bo -- Zhang, Na -- Huang, Zhiyong -- Zhu, Qihui -- Feng, Yue -- Mount, Andrew -- Hedgecock, Dennis -- Xu, Zhe -- Liu, Yunjie -- Domazet-Loso, Tomislav -- Du, Yishuai -- Sun, Xiaoqing -- Zhang, Shoudu -- Liu, Binghang -- Cheng, Peizhou -- Jiang, Xuanting -- Li, Juan -- Fan, Dingding -- Wang, Wei -- Fu, Wenjing -- Wang, Tong -- Wang, Bo -- Zhang, Jibiao -- Peng, Zhiyu -- Li, Yingxiang -- Li, Na -- Wang, Jinpeng -- Chen, Maoshan -- He, Yan -- Tan, Fengji -- Song, Xiaorui -- Zheng, Qiumei -- Huang, Ronglian -- Yang, Hailong -- Du, Xuedi -- Chen, Li -- Yang, Mei -- Gaffney, Patrick M -- Wang, Shan -- Luo, Longhai -- She, Zhicai -- Ming, Yao -- Huang, Wen -- Zhang, Shu -- Huang, Baoyu -- Zhang, Yong -- Qu, Tao -- Ni, Peixiang -- Miao, Guoying -- Wang, Junyi -- Wang, Qiang -- Steinberg, Christian E W -- Wang, Haiyan -- Li, Ning -- Qian, Lumin -- Zhang, Guojie -- Li, Yingrui -- Yang, Huanming -- Liu, Xiao -- Wang, Jian -- Yin, Ye -- Wang, Jun -- 268513/European Research Council/International -- England -- Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992520" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animal Shells/chemistry/*growth & development ; Animals ; Apoptosis Regulatory Proteins/genetics ; Crassostrea/*genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Larva/genetics/growth & development ; Mass Spectrometry ; Molecular Sequence Annotation ; Molecular Sequence Data ; Polymorphism, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, DNA ; Stress, Physiological/genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...