ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997
    Description: Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, P H -- Bell, J F 3rd -- Bridges, N T -- Britt, D T -- Gaddis, L -- Greeley, R -- Keller, H U -- Herkenhoff, K E -- Jaumann, R -- Johnson, J R -- Kirk, R L -- Lemmon, M -- Maki, J N -- Malin, M C -- Murchie, S L -- Oberst, J -- Parker, T J -- Reid, R J -- Sablotny, R -- Soderblom, L A -- Stoker, C -- Sullivan, R -- Thomas, N -- Tomasko, M G -- Wegryn, E -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1758-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. psmith@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388170" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ice ; *Mars ; Minerals ; *Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-04
    Description: Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Grotzinger, J P -- Arvidson, R E -- Bell, J F 3rd -- Calvin, W -- Christensen, P R -- Clark, B C -- Crisp, J A -- Farrand, W H -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- Knoll, A H -- McLennan, S M -- McSween, H Y Jr -- Morris, R V -- Rice, J W Jr -- Rieder, R -- Soderblom, L A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1709-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astrosun.tn.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576604" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Life ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Sulfates ; Sulfur ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-08-07
    Description: Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Blaney, D -- Cabrol, N -- Calvin, W -- Farmer, J -- Farrand, W H -- Goetz, W -- Golombek, M -- Grant, J A -- Greeley, R -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Moersch, J E -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Wolff, M J -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):800-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Ithaca, NY 14853-6801, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297658" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; *Mars ; Minerals ; Silicates ; Solar System ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-04
    Description: The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soderblom, L A -- Anderson, R C -- Arvidson, R E -- Bell, J F 3rd -- Cabrol, N A -- Calvin, W -- Christensen, P R -- Clark, B C -- Economou, T -- Ehlmann, B L -- Farrand, W H -- Fike, D -- Gellert, R -- Glotch, T D -- Golombek, M P -- Greeley, R -- Grotzinger, J P -- Herkenhoff, K E -- Jerolmack, D J -- Johnson, J R -- Jolliff, B -- Klingelhofer, G -- Knoll, A H -- Learner, Z A -- Li, R -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Morris, R V -- Rice, J W Jr -- Richter, L -- Rieder, R -- Rodionov, D -- Schroder, C -- Seelos, F P 4th -- Soderblom, J M -- Squyres, S W -- Sullivan, R -- Watters, W A -- Weitz, C M -- Wyatt, M B -- Yen, A -- Zipfel, J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Flagstaff, AZ 86001, USA. lsoderblom@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576606" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-09-09
    Description: The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling approximately 8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict "hopper crystals" that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Knoll, A H -- Arvidson, R E -- Clark, B C -- Grotzinger, J P -- Jolliff, B L -- McLennan, S M -- Tosca, N -- Bell, J F 3rd -- Calvin, W M -- Farrand, W H -- Glotch, T D -- Golombek, M P -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- McSween, H Y -- Yen, A S -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1403-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959999" target="_blank"〉PubMed〈/a〉
    Keywords: Acids ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Sulfates ; Time ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...