ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (9)
  • American Association for the Advancement of Science (AAAS)  (9)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: It has been assumed that the new members of the p53 protein family, p63 and p73, would have the same job as p53, namely, forcing cells to die if they or their DNA is damaged. Now, as Morrison and Kinoshita explain in their Perspective, one particular form of p73 has been found to be a survival factor rather than a death factor for sympathetic neurons during development (Pozniak et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, R S -- Kinoshita, Y -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):257-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, WA 98195-6470, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10917851" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; DNA-Binding Proteins/genetics/*physiology ; Genes, Tumor Suppressor ; Mice ; Neurons/*physiology ; Nuclear Proteins/genetics/*physiology ; Sympathetic Nervous System/cytology/*growth & development/physiology ; Tumor Suppressor Protein p53/genetics/physiology ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-25
    Description: Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nomura, Daniel K -- Morrison, Bradley E -- Blankman, Jacqueline L -- Long, Jonathan Z -- Kinsey, Steven G -- Marcondes, Maria Cecilia G -- Ward, Anna M -- Hahn, Yun Kyung -- Lichtman, Aron H -- Conti, Bruno -- Cravatt, Benjamin F -- 5P01DA009789/DA/NIDA NIH HHS/ -- AG028040/AG/NIA NIH HHS/ -- DA017259/DA/NIDA NIH HHS/ -- DA026261/DA/NIDA NIH HHS/ -- F31 DA026261-03/DA/NIDA NIH HHS/ -- K99 DA030908/DA/NIDA NIH HHS/ -- K99 DA030908-01/DA/NIDA NIH HHS/ -- K99DA030908/DA/NIDA NIH HHS/ -- P01 DA009789/DA/NIDA NIH HHS/ -- P01 DA009789-14/DA/NIDA NIH HHS/ -- P01 DA017259/DA/NIDA NIH HHS/ -- P01 DA017259-08/DA/NIDA NIH HHS/ -- P01DA01725/DA/NIDA NIH HHS/ -- R00 DA030908/DA/NIDA NIH HHS/ -- R00 DA030908-02/DA/NIDA NIH HHS/ -- R00DA030908/DA/NIDA NIH HHS/ -- R01 AG028040/AG/NIA NIH HHS/ -- R01 AG028040-04/AG/NIA NIH HHS/ -- R03 DA027936/DA/NIDA NIH HHS/ -- R03 DA027936-02/DA/NIDA NIH HHS/ -- R03DA027936/DA/NIDA NIH HHS/ -- T32 DA007027/DA/NIDA NIH HHS/ -- T32 DA007027-33/DA/NIDA NIH HHS/ -- T32DA007027/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):809-13. doi: 10.1126/science.1209200. Epub 2011 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. dnomura@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonic Acid/metabolism ; Arachidonic Acids/*metabolism ; Benzodioxoles/pharmacology ; Brain/drug effects/*metabolism/pathology ; Cannabinoid Receptor Modulators/*metabolism ; Cyclooxygenase 1/metabolism ; Cytokines/metabolism ; Eicosanoids/metabolism ; *Endocannabinoids ; Enzyme Inhibitors/pharmacology ; Glycerides/*metabolism ; Hydrolysis ; Inflammation/*metabolism/pathology ; Inflammation Mediators/pharmacology ; Lipopolysaccharides/pharmacology ; Liver/metabolism ; Lung/metabolism ; Metabolomics ; Mice ; Mice, Inbred C57BL ; Monoacylglycerol Lipases/antagonists & inhibitors/genetics/*metabolism ; Neuroprotective Agents/pharmacology ; Parkinsonian Disorders/metabolism/pathology ; Phospholipases A2/genetics/metabolism ; Piperidines/pharmacology ; Prostaglandins/biosynthesis/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-26
    Description: The shape of the human face and skull is largely genetically determined. However, the genomic basis of craniofacial morphology is incompletely understood and hypothesized to involve protein-coding genes, as well as gene regulatory sequences. We used a combination of epigenomic profiling, in vivo characterization of candidate enhancer sequences in transgenic mice, and targeted deletion experiments to examine the role of distant-acting enhancers in craniofacial development. We identified complex regulatory landscapes consisting of enhancers that drive spatially complex developmental expression patterns. Analysis of mouse lines in which individual craniofacial enhancers had been deleted revealed significant alterations of craniofacial shape, demonstrating the functional importance of enhancers in defining face and skull morphology. These results demonstrate that enhancers are involved in craniofacial development and suggest that enhancer sequence variation contributes to the diversity of human facial morphology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attanasio, Catia -- Nord, Alex S -- Zhu, Yiwen -- Blow, Matthew J -- Li, Zirong -- Liberton, Denise K -- Morrison, Harris -- Plajzer-Frick, Ingrid -- Holt, Amy -- Hosseini, Roya -- Phouanenavong, Sengthavy -- Akiyama, Jennifer A -- Shoukry, Malak -- Afzal, Veena -- Rubin, Edward M -- FitzPatrick, David R -- Ren, Bing -- Hallgrimsson, Benedikt -- Pennacchio, Len A -- Visel, Axel -- 1R01DE01963/DE/NIDCR NIH HHS/ -- 1R01DE021708/DE/NIDCR NIH HHS/ -- 1U01DE020054/DE/NIDCR NIH HHS/ -- F32 GM105202/GM/NIGMS NIH HHS/ -- MC_PC_U127561093/Medical Research Council/United Kingdom -- MC_U127561093/Medical Research Council/United Kingdom -- R01 DE019638/DE/NIDCR NIH HHS/ -- R01 DE021708/DE/NIDCR NIH HHS/ -- R01 HG003988/HG/NHGRI NIH HHS/ -- R01 HG003991/HG/NHGRI NIH HHS/ -- R01HG003988/HG/NHGRI NIH HHS/ -- R01HG003991/HG/NHGRI NIH HHS/ -- U01 DE020054/DE/NIDCR NIH HHS/ -- U01 DE020060/DE/NIDCR NIH HHS/ -- U01DE020060/DE/NIDCR NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54HG006997/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):1241006. doi: 10.1126/science.1241006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Craniofacial Abnormalities/genetics/pathology ; Enhancer Elements, Genetic/genetics/*physiology ; Epigenesis, Genetic ; Face/abnormalities/*anatomy & histology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Gene Targeting ; Maxillofacial Development/*genetics ; Mice ; Mice, Transgenic ; Sequence Deletion ; Skull/abnormalities/anatomy & histology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-08-16
    Description: Genes associated with Hirschsprung disease, a failure to form enteric ganglia in the hindgut, were highly up-regulated in gut neural crest stem cells relative to whole-fetus RNA. One of these genes, the glial cell line-derived neurotrophic factor (GDNF) receptor Ret, was necessary for neural crest stem cell migration in the gut. GDNF promoted the migration of neural crest stem cells in culture but did not affect their survival or proliferation. Gene expression profiling, combined with reverse genetics and analyses of stem cell function, suggests that Hirschsprung disease is caused by defects in neural crest stem cell function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwashita, Toshihide -- Kruger, Genevieve M -- Pardal, Ricardo -- Kiel, Mark J -- Morrison, Sean J -- CA46592/CA/NCI NIH HHS/ -- DK58771/DK/NIDDK NIH HHS/ -- NIH5P60-DK20572/DK/NIDDK NIH HHS/ -- P30 AR48310/AR/NIAMS NIH HHS/ -- P60-AR20557/AR/NIAMS NIH HHS/ -- R01 NS040750/NS/NINDS NIH HHS/ -- R01 NS040750-01/NS/NINDS NIH HHS/ -- R01 NS40750-01/NS/NINDS NIH HHS/ -- R21 HD40760-02/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):972-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0934, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Movement ; Cell Separation ; Cell Survival ; Cells, Cultured ; Digestive System/cytology/*embryology/innervation/metabolism ; Fetus/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Glial Cell Line-Derived Neurotrophic Factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors ; Hirschsprung Disease/*etiology/genetics ; Mice ; Multipotent Stem Cells/*physiology ; Nerve Growth Factors/genetics/metabolism/pharmacology ; Neural Crest/*cytology/physiology ; Oligonucleotide Array Sequence Analysis ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-ret ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-23
    Description: Mammals normally maintain their core body temperature (CBT) despite changes in environmental temperature. Exceptions to this norm include suspended animation-like states such as hibernation, torpor, and estivation. These states are all characterized by marked decreases in metabolic rate, followed by a loss of homeothermic control in which the animal's CBT approaches that of the environment. We report that hydrogen sulfide can induce a suspended animation-like state in a nonhibernating species, the house mouse (Mus musculus). This state is readily reversible and does not appear to harm the animal. This suggests the possibility of inducing suspended animation-like states for medical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blackstone, Eric -- Morrison, Mike -- Roth, Mark B -- GM48435/GM/NIGMS NIH HHS/ -- T32 AG00057/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basal Metabolism/*drug effects ; Behavior, Animal/drug effects ; Body Temperature/*drug effects ; Carbon Dioxide/metabolism ; Dose-Response Relationship, Drug ; Estivation ; Female ; Hibernation ; Hydrogen Sulfide/*pharmacology/toxicity ; Mice ; Mice, Inbred C57BL ; Oxygen Consumption/drug effects ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-11-27
    Description: In density-arrested monolayer cultures of Balb/c 3T3 cells, platelet-derived growth factor (PDGF) stimulates expression of the c-myc and c-fos proto-oncogenes, as well as the functionally uncharacterized genes, JE, KC, and JB. These genes are not coordinately regulated. Under ordinary conditions, c-fos, JE, KC, and JB respond to PDGF only when the cells are in a state of G0 growth arrest at the time of PDGF addition. The c-myc gene is regulated in opposition to the other genes, responding best to PDGF in cycling cultures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rollins, B J -- Morrison, E D -- Stiles, C D -- CA 20042-09/CA/NCI NIH HHS/ -- GM 31489-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Nov 27;238(4831):1269-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Medicine, Dana-Farber Cancer Institute, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3685976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/drug effects ; Cell Division/drug effects ; Cells, Cultured ; Gene Expression Regulation/*drug effects ; Interphase ; Mice ; Mice, Inbred BALB C ; Platelet-Derived Growth Factor/*pharmacology ; Proto-Oncogenes/*drug effects ; Transcription, Genetic/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1986-11-07
    Description: The current prevalence of the acquired immune deficiency syndrome in humans has provoked renewed interest in methods of protective immunization against retrovirus-induced diseases. In this study, a vaccinia-retrovirus recombinant vector was constructed to study mechanisms of immune protection against Friend virus leukemia in mice. The envelope (env) gene from Friend murine leukemia virus (F-MuLV) was inserted into the genome of a vaccinia virus expression vector. Infected cells synthesized gp85, the glycosylated primary product of the env gene. Processing to gp70 and p15E, and cell surface localization, were similar to that occurring in cells infected with F-MuLV. Mice inoculated with live recombinant vaccinia virus had an envelope-specific T-cell proliferative response and, after challenge with Friend virus complex, developed neutralizing antibody and cytotoxic T cells (CTL) and were protected against leukemia. In contrast, unimmunized and control groups developed a delayed neutralizing antibody response, but no detectable CTL, and succumbed to leukemia. Genes of the major histocompatibility complex influenced protection induced by the vaccinia recombinant but not that induced by attenuated N-tropic Friend virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Earl, P L -- Moss, B -- Morrison, R P -- Wehrly, K -- Nishio, J -- Chesebro, B -- New York, N.Y. -- Science. 1986 Nov 7;234(4777):728-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3490689" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Antigens/*immunology ; DNA, Recombinant ; Female ; Friend murine leukemia virus/genetics/immunology ; *Genes, Viral ; Leukemia, Erythroblastic, Acute/prevention & control ; Leukemia, Experimental/*prevention & control ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred Strains ; Sex Factors ; Spleen/microbiology ; T-Lymphocytes/*immunology ; T-Lymphocytes, Cytotoxic/immunology ; Vaccines, Synthetic/*immunology ; Vaccinia virus/genetics/immunology ; Viral Envelope Proteins/genetics/*immunology ; Viral Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-09-20
    Description: Methods have been developed to transfect immunoglobulin genes into lymphoid cells. The transfected genes are faithfully expressed, and assembly can occur both between the transfected and endogenous chains and between two transfected chains. Gene transfection can be used to reconstitute immunoglobulin molecules and to produce novel immunoglobulin molecules. These novel molecules can represent unique combinations of heavy and light chains; alternatively, by means of recombinant DNA technology, genes can be assembled in vitro, transfected, and expressed. The end products of such manipulations include chimeric molecules with variable regions joined to different isotypic constant regions; this is possible both within and between species. It is also possible to synthesize altered immunoglobulin molecules, as well as molecules having immunoglobulin sequences fused with nonimmunoglobulin sequences (for example, enzyme sequences).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, S L -- CA 13696/CA/NCI NIH HHS/ -- CA 16858/CA/NCI NIH HHS/ -- CA 22736/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1985 Sep 20;229(4719):1202-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3929380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chimera ; DNA, Recombinant ; Gene Expression Regulation ; Genes, Bacterial ; Humans ; Hybridomas/*metabolism ; Immunoglobulin Constant Regions/biosynthesis/genetics ; Immunoglobulin Heavy Chains/biosynthesis/genetics ; Immunoglobulin Light Chains/biosynthesis/genetics ; Immunoglobulin Variable Region/biosynthesis/genetics ; Immunoglobulins/biosynthesis/*genetics/physiology ; Lymphocytes/immunology ; Mice ; Structure-Activity Relationship ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...