ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-06
    Description: A worldwide initiative in structural genomics aims to capitalize on the recent successes of the genome projects. Substantial new investments in structural genomics in the past 2 years indicate the high level of support for these international efforts. Already, enormous progress has been made on high-throughput methodologies and technologies that will speed up macromolecular structure determinations. Recent international meetings have resulted in the formation of an International Structural Genomics Organization to formulate policy and foster cooperation between the public and private efforts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, R C -- Yokoyama, S -- Wilson, I A -- P50 GM62411/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joint Center for Structural Genomics, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588249" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Computational Biology ; Congresses as Topic ; Costs and Cost Analysis ; Crystallography, X-Ray ; Databases, Factual ; *Genomics ; Guidelines as Topic ; Humans ; Information Management ; Information Services ; International Cooperation ; Internet ; Nuclear Magnetic Resonance, Biomolecular ; Patents as Topic ; Private Sector ; *Protein Conformation ; Protein Folding ; Proteins/*chemistry ; *Proteome ; Public Sector ; Publishing ; Technology Transfer
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-10-13
    Description: The forte of catalytic antibodies has resided in the control of the ground-state reaction coordinate. A principle and method are now described in which antibodies can direct the outcome of photophysical and photochemical events that take place on excited-state potential energy surfaces. The key component is a chemically reactive optical sensor that provides a direct report of the dynamic interplay between protein and ligand at the active site. To illustrate the concept, we used a trans-stilbene hapten to elicit a panel of monoclonal antibodies that displayed a range of fluorescent spectral behavior when bound to a trans-stilbene substrate. Several antibodies yielded a blue fluorescence indicative of an excited-state complex or "exciplex" between trans-stilbene and the antibody. The antibodies controlled the isomerization coordinate of trans-stilbene and dynamically coupled this manifold with an active-site residue. A step was taken toward the use of antibody-based photochemical sensors for diagnostic and clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simeonov, A -- Matsushita, M -- Juban, E A -- Thompson, E H -- Hoffman, T Z -- Beuscher, A E 4th -- Taylor, M J -- Wirsching, P -- Rettig, W -- McCusker, J K -- Stevens, R C -- Millar, D P -- Schultz, P G -- Lerner, R A -- Janda, K D -- AI39089/AI/NIAID NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):307-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030644" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/*chemistry ; Binding Sites ; Binding Sites, Antibody ; Chemistry, Physical ; Crystallography, X-Ray ; *Fluorescence ; Haptens ; Ligands ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Photochemistry ; Physicochemical Phenomena ; Spectrometry, Fluorescence ; Stereoisomerism ; Stilbenes/*chemistry/*immunology ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-12-03
    Description: Cellular communication in the nervous system is mediated by chemical messengers that include amino acids, monoamines, peptide hormones, and lipids. An interesting question is how neurons regulate signals that are transmitted by membrane-embedded lipids. Here, we report the 2.8 angstrom crystal structure of the integral membrane protein fatty acid amide hydrolase (FAAH), an enzyme that degrades members of the endocannabinoid class of signaling lipids and terminates their activity. The structure of FAAH complexed with an arachidonyl inhibitor reveals how a set of discrete structural alterations allows this enzyme, in contrast to soluble hydrolases of the same family, to integrate into cell membranes and establish direct access to the bilayer from its active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bracey, Michael H -- Hanson, Michael A -- Masuda, Kim R -- Stevens, Raymond C -- Cravatt, Benjamin F -- R01 DA013173/DA/NIDA NIH HHS/ -- R01 DA013173-02/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459591" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/antagonists & inhibitors/*chemistry/metabolism ; Animals ; Arachidonic Acids/metabolism ; *Bacterial Proteins ; Binding Sites ; Cannabinoid Receptor Modulators ; Catalysis ; Catalytic Domain ; Cell Membrane/*enzymology ; Crystallography, X-Ray ; Dimerization ; Endocannabinoids ; Helix-Turn-Helix Motifs ; Lipid Bilayers ; Models, Molecular ; Organophosphonates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Proteins/chemistry/metabolism ; Signal Transduction ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-06-13
    Description: The crystal structures of a germline antibody Fab fragment and its complex with hapten have been solved at 2.1 A resolution. These structures are compared with the corresponding crystal structures of the affinity-matured antibody, 48G7, which has a 30,000 times higher affinity for hapten as a result of nine replacement somatic mutations. Significant changes in the configuration of the combining site occur upon binding of hapten to the germline antibody, whereas hapten binds to the mature antibody by a lock-and-key fit mechanism. The reorganization of the combining site that was nucleated by hapten binding is further optimized by somatic mutations that occur up to 15 from bound hapten. These results suggest that the binding potential of the primary antibody repertoire may be significantly expanded by the ability of germline antibodies to adopt more than one combining-site configuration, with both antigen binding and somatic mutation stabilizing the configuration with optimal hapten complementarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wedemayer, G J -- Patten, P A -- Wang, L H -- Schultz, P G -- Stevens, R C -- R01 AI39089/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1665-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180069" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/genetics/immunology ; Antibody Affinity ; Antibody Diversity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Binding Sites ; *Binding Sites, Antibody ; Crystallography, X-Ray ; *Evolution, Molecular ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/immunology ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-11-07
    Description: DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from 〉30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, David R -- Balasubramanian, Shankar -- Swerdlow, Harold P -- Smith, Geoffrey P -- Milton, John -- Brown, Clive G -- Hall, Kevin P -- Evers, Dirk J -- Barnes, Colin L -- Bignell, Helen R -- Boutell, Jonathan M -- Bryant, Jason -- Carter, Richard J -- Keira Cheetham, R -- Cox, Anthony J -- Ellis, Darren J -- Flatbush, Michael R -- Gormley, Niall A -- Humphray, Sean J -- Irving, Leslie J -- Karbelashvili, Mirian S -- Kirk, Scott M -- Li, Heng -- Liu, Xiaohai -- Maisinger, Klaus S -- Murray, Lisa J -- Obradovic, Bojan -- Ost, Tobias -- Parkinson, Michael L -- Pratt, Mark R -- Rasolonjatovo, Isabelle M J -- Reed, Mark T -- Rigatti, Roberto -- Rodighiero, Chiara -- Ross, Mark T -- Sabot, Andrea -- Sankar, Subramanian V -- Scally, Aylwyn -- Schroth, Gary P -- Smith, Mark E -- Smith, Vincent P -- Spiridou, Anastassia -- Torrance, Peta E -- Tzonev, Svilen S -- Vermaas, Eric H -- Walter, Klaudia -- Wu, Xiaolin -- Zhang, Lu -- Alam, Mohammed D -- Anastasi, Carole -- Aniebo, Ify C -- Bailey, David M D -- Bancarz, Iain R -- Banerjee, Saibal -- Barbour, Selena G -- Baybayan, Primo A -- Benoit, Vincent A -- Benson, Kevin F -- Bevis, Claire -- Black, Phillip J -- Boodhun, Asha -- Brennan, Joe S -- Bridgham, John A -- Brown, Rob C -- Brown, Andrew A -- Buermann, Dale H -- Bundu, Abass A -- Burrows, James C -- Carter, Nigel P -- Castillo, Nestor -- Chiara E Catenazzi, Maria -- Chang, Simon -- Neil Cooley, R -- Crake, Natasha R -- Dada, Olubunmi O -- Diakoumakos, Konstantinos D -- Dominguez-Fernandez, Belen -- Earnshaw, David J -- Egbujor, Ugonna C -- Elmore, David W -- Etchin, Sergey S -- Ewan, Mark R -- Fedurco, Milan -- Fraser, Louise J -- Fuentes Fajardo, Karin V -- Scott Furey, W -- George, David -- Gietzen, Kimberley J -- Goddard, Colin P -- Golda, George S -- Granieri, Philip A -- Green, David E -- Gustafson, David L -- Hansen, Nancy F -- Harnish, Kevin -- Haudenschild, Christian D -- Heyer, Narinder I -- Hims, Matthew M -- Ho, Johnny T -- Horgan, Adrian M -- Hoschler, Katya -- Hurwitz, Steve -- Ivanov, Denis V -- Johnson, Maria Q -- James, Terena -- Huw Jones, T A -- Kang, Gyoung-Dong -- Kerelska, Tzvetana H -- Kersey, Alan D -- Khrebtukova, Irina -- Kindwall, Alex P -- Kingsbury, Zoya -- Kokko-Gonzales, Paula I -- Kumar, Anil -- Laurent, Marc A -- Lawley, Cynthia T -- Lee, Sarah E -- Lee, Xavier -- Liao, Arnold K -- Loch, Jennifer A -- Lok, Mitch -- Luo, Shujun -- Mammen, Radhika M -- Martin, John W -- McCauley, Patrick G -- McNitt, Paul -- Mehta, Parul -- Moon, Keith W -- Mullens, Joe W -- Newington, Taksina -- Ning, Zemin -- Ling Ng, Bee -- Novo, Sonia M -- O'Neill, Michael J -- Osborne, Mark A -- Osnowski, Andrew -- Ostadan, Omead -- Paraschos, Lambros L -- Pickering, Lea -- Pike, Andrew C -- Pike, Alger C -- Chris Pinkard, D -- Pliskin, Daniel P -- Podhasky, Joe -- Quijano, Victor J -- Raczy, Come -- Rae, Vicki H -- Rawlings, Stephen R -- Chiva Rodriguez, Ana -- Roe, Phyllida M -- Rogers, John -- Rogert Bacigalupo, Maria C -- Romanov, Nikolai -- Romieu, Anthony -- Roth, Rithy K -- Rourke, Natalie J -- Ruediger, Silke T -- Rusman, Eli -- Sanches-Kuiper, Raquel M -- Schenker, Martin R -- Seoane, Josefina M -- Shaw, Richard J -- Shiver, Mitch K -- Short, Steven W -- Sizto, Ning L -- Sluis, Johannes P -- Smith, Melanie A -- Ernest Sohna Sohna, Jean -- Spence, Eric J -- Stevens, Kim -- Sutton, Neil -- Szajkowski, Lukasz -- Tregidgo, Carolyn L -- Turcatti, Gerardo -- Vandevondele, Stephanie -- Verhovsky, Yuli -- Virk, Selene M -- Wakelin, Suzanne -- Walcott, Gregory C -- Wang, Jingwen -- Worsley, Graham J -- Yan, Juying -- Yau, Ling -- Zuerlein, Mike -- Rogers, Jane -- Mullikin, James C -- Hurles, Matthew E -- McCooke, Nick J -- West, John S -- Oaks, Frank L -- Lundberg, Peter L -- Klenerman, David -- Durbin, Richard -- Smith, Anthony J -- B05823/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- MOL04534/Biotechnology and Biological Sciences Research Council/United Kingdom -- Z01 HG200330-03/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Nov 6;456(7218):53-9. doi: 10.1038/nature07517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Illumina Cambridge Ltd. (Formerly Solexa Ltd), Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex CB10 1XL, UK. dbentley@illumina.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987734" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, X/genetics ; Consensus Sequence/genetics ; Genome, Human/*genetics ; Genomics/economics/*methods ; Genotype ; Humans ; Male ; Nigeria ; Polymorphism, Single Nucleotide/genetics ; Sensitivity and Specificity ; Sequence Analysis, DNA/economics/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-14
    Description: The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded beta-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2 (ref. 5). A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Lauren G -- Prochnow, Courtney -- Chang, Y Paul -- Bransteitter, Ronda -- Chelico, Linda -- Sen, Udayaditya -- Stevens, Raymond C -- Goodman, Myron F -- Chen, Xiaojiang S -- R01 AI055926/AI/NIAID NIH HHS/ -- R01 AI055926-05/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):121-4. doi: 10.1038/nature07357. Epub 2008 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849968" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents ; *Catalytic Domain ; Crystallography, X-Ray ; Cytidine Deaminase/*chemistry/genetics/isolation & purification/*metabolism ; DNA, Single-Stranded/metabolism ; Escherichia coli ; Humans ; Models, Molecular ; Muscle Proteins/chemistry ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Structure, Secondary ; Structural Homology, Protein ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-06
    Description: Sirtuins are NAD(+)-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal under basal conditions, but show marked hyperacetylation of several mitochondrial proteins. Here we report that SIRT3 expression is upregulated during fasting in liver and brown adipose tissues. During fasting, livers from mice lacking SIRT3 had higher levels of fatty-acid oxidation intermediate products and triglycerides, associated with decreased levels of fatty-acid oxidation, compared to livers from wild-type mice. Mass spectrometry of mitochondrial proteins shows that long-chain acyl coenzyme A dehydrogenase (LCAD) is hyperacetylated at lysine 42 in the absence of SIRT3. LCAD is deacetylated in wild-type mice under fasted conditions and by SIRT3 in vitro and in vivo; and hyperacetylation of LCAD reduces its enzymatic activity. Mice lacking SIRT3 exhibit hallmarks of fatty-acid oxidation disorders during fasting, including reduced ATP levels and intolerance to cold exposure. These findings identify acetylation as a novel regulatory mechanism for mitochondrial fatty-acid oxidation and demonstrate that SIRT3 modulates mitochondrial intermediary metabolism and fatty-acid use during fasting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirschey, Matthew D -- Shimazu, Tadahiro -- Goetzman, Eric -- Jing, Enxuan -- Schwer, Bjoern -- Lombard, David B -- Grueter, Carrie A -- Harris, Charles -- Biddinger, Sudha -- Ilkayeva, Olga R -- Stevens, Robert D -- Li, Yu -- Saha, Asish K -- Ruderman, Neil B -- Bain, James R -- Newgard, Christopher B -- Farese, Robert V Jr -- Alt, Frederick W -- Kahn, C Ronald -- Verdin, Eric -- DK019514-29/DK/NIDDK NIH HHS/ -- DK59637/DK/NIDDK NIH HHS/ -- K01 DK076573/DK/NIDDK NIH HHS/ -- K08 AG022325/AG/NIA NIH HHS/ -- K08 AG022325-01A1/AG/NIA NIH HHS/ -- P01 HL068758/HL/NHLBI NIH HHS/ -- P01 HL068758-06A1/HL/NHLBI NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- P30 DK026743-26A1/DK/NIDDK NIH HHS/ -- R01 DK019514/DK/NIDDK NIH HHS/ -- R01 DK019514-29/DK/NIDDK NIH HHS/ -- R01 DK067509/DK/NIDDK NIH HHS/ -- R01 DK067509-04/DK/NIDDK NIH HHS/ -- U24 DK059637/DK/NIDDK NIH HHS/ -- U24 DK059637-01/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 4;464(7285):121-5. doi: 10.1038/nature08778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203611" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acyl-CoA Dehydrogenase, Long-Chain/chemistry/*metabolism ; Adenosine Triphosphate/biosynthesis/metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Animals ; Body Temperature Regulation ; Caloric Restriction ; Carnitine/analogs & derivatives/metabolism ; Cell Line ; Cold Temperature ; Fasting/metabolism ; Fatty Acids/*metabolism ; Humans ; Hypoglycemia/metabolism ; Liver/enzymology/metabolism ; Male ; Mass Spectrometry ; Mice ; Mitochondria/*enzymology/*metabolism ; Oxidation-Reduction ; Sirtuin 3/deficiency/genetics/*metabolism ; Triglycerides/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-31
    Description: In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 A resolution, and with a non-nucleotide antagonist BPTU at 2.2 A resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dandan -- Gao, Zhan-Guo -- Zhang, Kaihua -- Kiselev, Evgeny -- Crane, Steven -- Wang, Jiang -- Paoletta, Silvia -- Yi, Cuiying -- Ma, Limin -- Zhang, Wenru -- Han, Gye Won -- Liu, Hong -- Cherezov, Vadim -- Katritch, Vsevolod -- Jiang, Hualiang -- Stevens, Raymond C -- Jacobson, Kenneth A -- Zhao, Qiang -- Wu, Beili -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Z01 DK031116-21/Intramural NIH HHS/ -- Z01DK031116-26/DK/NIDDK NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):317-21. doi: 10.1038/nature14287. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. ; Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA [2] Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism/pharmacology ; Humans ; Ligands ; Models, Molecular ; Molecular Conformation ; Purinergic P2Y Receptor Antagonists/*chemistry/metabolism/pharmacology ; Receptors, Purinergic P2Y1/*chemistry/*metabolism ; Thionucleotides/chemistry/metabolism ; Uracil/*analogs & derivatives/chemistry/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-07-10
    Description: As a first step in a program to use genetically altered mice in the study of memory mechanisms, mutant mice were produced that do not express the alpha-calcium-calmodulin-dependent kinase II (alpha-CaMKII). The alpha-CaMKII is highly enriched in postsynaptic densities of hippocampus and neocortex and may be involved in the regulation of long-term potentiation (LTP). Such mutant mice exhibited mostly normal behaviors and presented no obvious neuroanatomical defects. Whole cell recordings reveal that postsynaptic mechanisms, including N-methyl-D-aspartate (NMDA) receptor function, are intact. Despite normal postsynaptic mechanisms, these mice are deficient in their ability to produce LTP and are therefore a suitable model for studying the relation between LTP and learning processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silva, A J -- Stevens, C F -- Tonegawa, S -- Wang, Y -- 5 R01 NS 12961-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 10;257(5067):201-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Cancer Research, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1378648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Blotting, Northern ; Blotting, Southern ; Calcium-Calmodulin-Dependent Protein Kinases ; Chromosome Mapping ; DNA/analysis ; Electrophysiology ; Female ; Hippocampus/*physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains/*genetics ; Mutagenesis, Site-Directed ; Plasmids ; Protein Kinases/*deficiency/*physiology ; RNA/analysis ; Receptors, N-Methyl-D-Aspartate ; Synapses/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...