ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (10)
  • LUNAR AND PLANETARY EXPLORATION  (4)
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G; p 367-368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5685; 794-799
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain 〈/=25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5685; 842-845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 306; 5702; 1698-1703
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Ancient thermal spring sites have several features which make them significant targets in a search for past life. Chemical (including redox) reactions in hydrothermal systems possibly played a role in the origin of life on Earth and elsewhere. Spring waters frequently contain reduced species (sulfur compounds, Fe(sup +2), etc.) which can provide chemical energy for organic synthesis. Relatively cool hydrothermal systems can sustain abundant microbial life (on Earth, at temperatures greater than 110 C). A spring site on Mars perhaps might even have maintained liquid water for periods sufficiently long to sustain surface-dwelling biota had they existed. On Earth, a variety of microbial mat communities can be sampled along the wide range of temperatures surrounding the spring, thus offering an opportunity to sample a broad biological diversity. Thermal spring waters frequently deposit minerals (carbonates, silica, etc.) which can entomb and preserve both fluid inclusions and microbial communities. These deposits can be highly fossiliferous and preserve biological inclusions for geologically long periods of time. Such deposits can cover several square km on Earth, and their distinctive mineralogy (e.g., silica- and/or carbonate-rich) can contrast sharply with that of the surrounding region. As with Martian volcanoes, Martian thermal spring complexes and their deposits might typically be much larger than their counterparts on Earth. Thus Martian spring deposits are perhaps readily detectable and even accessible. Elysium Planitia is an example of a promising region where hydrothermal activity very likely remobilized ground ice and sustained springs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; Dec 11, 1995 - Dec 15, 1995; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The hydrogen contents of various Apollo 15 rocks and Apollo 15 and 16 soil particle types and sieve fractions have been determined by the pyrolysis method. The Apollo 15 crystalline rocks analyzed release very little hydrogen (approximately 6 micromoles H/g sample). The mineral, glass, and light-colored breccia fragments in the soils contain approximately 5, 30, and 10 micromoles H/g sample, respectively. The dark breccias and glassy agglutinates examined have much higher hydrogen contents (60 and 110 micromoles H/g sample). For soil particle diameters less than 105 microns, hydrogen content increases linearly with particle surface area per particle mass. The calculated grain surface average concentrations of hydrogen in the Apollo 15 and 16 soils fall short of experimentally determined saturation values by a factor of 20. The volume-correlated component of hydrogen in a soil increases with the maturity of the soil.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Science Conference; Mar 18, 1974 - Mar 22, 1974; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Apollo 17 light-mantle soils and Apollo 15 Apennine Front soils are compared with respect to isotopic enrichment of C-13 and the maturity of the site. Analyses of soil-size fractions indicate that while the carbon concentration on particle surfaces remains relatively constant with increasing soil maturity, total surface-correlated carbon increases due to increasing total soil surface area. The role of agglutinates in the incorporation of surface-correlated carbon into aggregate grains is examined; agglutinates contain a major percentage of the carbon found in mature soil, and the volume-correlated carbon component in agglutinates apparently continues to increase after the surface-correlated carbon concentrations have reached a constant value. Constraints that may limit the carbon concentration in lunar soils to a value not greater than 300 micrograms/g are considered.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Science Conference; Mar 17, 1975 - Mar 21, 1975; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Analytical techniques of improved sensitivity have revealed details of the concentrations and isotopic compositions of light elements for a comprehensive suite of samples from the Apollo 12 regolith. These samples show a wide spread in maturity, although maximum contents observed for solar wind elements are less than observed at other sites, possibly reflecting relative recency of craters at the Apollo 12 site. Isotopic composition of nitrogen is consistent with the idea that N-15/N-14 in the solar wind has increased with time, at least a major part of this increase having occurred in the past 3.1 Gyr. Sulfur isotope systematics support a model in which sulfur is both added to the regolith, by meteoritic influx, and lost, by an isotopically selective process. Most soils from this site are heavily contaminated with terrestrial carbon.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta; 42; Apr. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14〈Z〈92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-19549 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...