ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Laser-induced breakdown spectroscopy (LIBS) uses pulses of laser light to ablate a material from the surface of a sample and produce an expanding plasma. The optical emission from the plasma produces a spectrum which can be used to classify target materials and estimate their composition. The ChemCam instrument on the Mars Science Laboratory (MSL) mission will use LIBS to rapidly analyze targets remotely, allowing more resource- and time-intensive in-situ analyses to be reserved for targets of particular interest. ChemCam will also be used to analyze samples that are not reachable by the rover's in-situ instruments. Due to these tactical and scientific roles, it is important that ChemCam-derived sample compositions are as accurate as possible. We have compared the results of partial least squares (PLS), multilayer perceptron (MLP) artificial neural networks (ANNs), and cascade correlation (CC) ANNs to determine which technique yields better estimates of quantitative element abundances in rock and mineral samples. The number of hidden nodes in the MLP ANNs was optimized using a genetic algorithm. The influence of two data preprocessing techniques were also investigated: genetic algorithm feature selection and averaging the spectra for each training sample prior to training the PLS and ANN algorithms. We used a ChemCam-like laboratory stand-off LIBS system to collect spectra of 30 pressed powder geostandards and a diverse suite of 196 geologic slab samples of known bulk composition. We tested the performance of PLS and ANNs on a subset of these samples, choosing to focus on silicate rocks and minerals with a loss on ignition of less than 2 percent. This resulted in a set of 22 pressed powder geostandards and 80 geologic samples. Four of the geostandards were used as a validation set and 18 were used as the training set for the algorithms. We found that PLS typically resulted in the lowest average absolute error in its predictions, but that the optimized MLP ANN and the CC ANN often gave results comparable to PLS. Averaging the spectra for each training sample and/or using feature selection to choose a small subset of wavelengths to use for predictions gave mixed results, with degraded performance in some cases and similar or slightly improved performance in other cases. However, training time was significantly reduced for both PLS and ANN methods by implementing feature selection, making this a potentially appealing method for initial, rapid-turn-around analyses necessary for Chemcam's tactical role on MSL. Choice of training samples has a strong influence on the accuracy of predictions. We are currently investigating the use of clustering algorithms (e.g. k-means, neural gas, etc.) to identify training sets that are spectrally similar to the unknown samples that are being predicted, and therefore result in improved predictions
    Keywords: Geophysics
    Type: JSC-CN-22197 , 2010 AGU Fall Meeting; Dec 13, 2010 - Dec 18, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science.
    Keywords: Geophysics
    Type: M12-1943 , International Workshop on Instrumentation for Planetary Missions (IPM-2-12); Oct 10, 2012 - Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].
    Keywords: Geophysics
    Type: JSC-CN-31277 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 26 (1987), S. 329-334 
    ISSN: 1432-1432
    Keywords: Maize ; Ac ; Ds ; Controlling elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Genetica 86 (1992), S. 55-66 
    ISSN: 1573-6857
    Keywords: Ac ; Dsl ; Poaceae ; transposable elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6857
    Keywords: Ac ; pearl millet ; transposable elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5′ and one 3′, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...