ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-04
    Description: Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Grotzinger, J P -- Arvidson, R E -- Bell, J F 3rd -- Calvin, W -- Christensen, P R -- Clark, B C -- Crisp, J A -- Farrand, W H -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- Knoll, A H -- McLennan, S M -- McSween, H Y Jr -- Morris, R V -- Rice, J W Jr -- Rieder, R -- Soderblom, L A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1709-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astrosun.tn.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576604" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Life ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Sulfates ; Sulfur ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-04
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Marais, D J Des -- d'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A H -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1698-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576602" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-04
    Description: The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soderblom, L A -- Anderson, R C -- Arvidson, R E -- Bell, J F 3rd -- Cabrol, N A -- Calvin, W -- Christensen, P R -- Clark, B C -- Economou, T -- Ehlmann, B L -- Farrand, W H -- Fike, D -- Gellert, R -- Glotch, T D -- Golombek, M P -- Greeley, R -- Grotzinger, J P -- Herkenhoff, K E -- Jerolmack, D J -- Johnson, J R -- Jolliff, B -- Klingelhofer, G -- Knoll, A H -- Learner, Z A -- Li, R -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Morris, R V -- Rice, J W Jr -- Richter, L -- Rieder, R -- Rodionov, D -- Schroder, C -- Seelos, F P 4th -- Soderblom, J M -- Squyres, S W -- Sullivan, R -- Watters, W A -- Weitz, C M -- Wyatt, M B -- Yen, A -- Zipfel, J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Flagstaff, AZ 86001, USA. lsoderblom@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576606" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Des Marais, D J -- D'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):794-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297657" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; Geologic Sediments ; Geological Phenomena ; Geology ; Magnetics ; *Mars ; Minerals ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-09-09
    Description: The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling approximately 8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict "hopper crystals" that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Knoll, A H -- Arvidson, R E -- Clark, B C -- Grotzinger, J P -- Jolliff, B L -- McLennan, S M -- Tosca, N -- Bell, J F 3rd -- Calvin, W M -- Farrand, W H -- Glotch, T D -- Golombek, M P -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- McSween, H Y -- Yen, A S -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1403-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959999" target="_blank"〉PubMed〈/a〉
    Keywords: Acids ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Sulfates ; Time ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-25
    Description: Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arvidson, R E -- Squyres, S W -- Bell, J F 3rd -- Catalano, J G -- Clark, B C -- Crumpler, L S -- de Souza, P A Jr -- Fairen, A G -- Farrand, W H -- Fox, V K -- Gellert, R -- Ghosh, A -- Golombek, M P -- Grotzinger, J P -- Guinness, E A -- Herkenhoff, K E -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Moore, J M -- Morris, R V -- Murchie, S L -- Parker, T J -- Paulsen, G -- Rice, J W -- Ruff, S W -- Smith, M D -- Wolff, M J -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1248097. doi: 10.1126/science.1248097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458648" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Geologic Sediments ; Hydrogen-Ion Concentration ; *Mars ; Silicates/analysis/chemistry ; Spacecraft ; Sulfates/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.
    Keywords: Geosciences (General)
    Type: Science (ISSN 0036-8075); Volume 284; 5423; 2129-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Upper Proterozoic carbonate successions from central East Greenland (the Limestone-Dolomite 'Series' of the Eleonore Bay Group) and Svalbard (the Backlundtoppen Formation of the Akademikerbreen) Group, Spitsbergen, and the Upper Russo Formation of the Raoldtoppen Group, Nordaustlandet) contain thick sequences dominated by pisolites. These rocks were generated in shallow marine environments, and the pisoids are essentially oversized ooids. A marine environment is supported by the thickness and lateral extent of the carbonates; by a sedimentary association of pisolites with stromatolites, flake-conglomerates, calcarenites, calcilutites, microphytolites, and ooids similar to that found in numerous other Proterozoic carbonate successions; by sedimentary structures, including cross-beds and megaripples that characterize the pisolitic beds; and by microorganisms that inhabit modern marine ooids of the Bahama Banks. Petrographic features and strontium abundances suggest that the pisoids were originally aragonitic, but neomorphism, silicification, calcitization, and dolomitization have extensively modified original mineralogies and fabrics. The East Greenland and Svalbard pisolitic carbonates reflect similar depositional environments and diagenetic histories, reinforcing previous bio-, litho-, and chemostratigraphic interpretations that the two sequences accumulated contiguously in a coastal zone of pisoid genesis which extended for at least 600, and probably 1000 or more, kilometres.
    Keywords: Geosciences (General)
    Type: Sedimentology (ISSN 0037-0746); 36; 75-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in the restricted Delaware, Zechstein, and other basins. Temporal coincidence of these processes resulted in surface seawater that was greatly supersaturated by Phanerozoic standards and whose only precedents occurred in Precambrian oceans.
    Keywords: Geosciences (General)
    Type: Palaios (ISSN 0883-1351); 10; 6; 578-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...