ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-22
    Description: Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arany, Zoltan -- Foo, Shi-Yin -- Ma, Yanhong -- Ruas, Jorge L -- Bommi-Reddy, Archana -- Girnun, Geoffrey -- Cooper, Marcus -- Laznik, Dina -- Chinsomboon, Jessica -- Rangwala, Shamina M -- Baek, Kwan Hyuck -- Rosenzweig, Anthony -- Spiegelman, Bruce M -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-12/DK/NIDDK NIH HHS/ -- R01 DK054477/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Feb 21;451(7181):1008-12. doi: 10.1038/nature06613.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. zarany1@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cells, Cultured ; Gene Expression Regulation ; Hypoxia-Inducible Factor 1/metabolism ; Ischemia/*metabolism ; Mice ; Mice, Transgenic ; Muscle, Skeletal/metabolism ; *Neovascularization, Physiologic ; Oxygen/metabolism ; Receptors, Estrogen/metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transgenes/genetics ; Vascular Endothelial Growth Factor A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-08
    Description: Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-alpha and PGC1alpha (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDermott-Roe, Chris -- Ye, Junmei -- Ahmed, Rizwan -- Sun, Xi-Ming -- Serafin, Anna -- Ware, James -- Bottolo, Leonardo -- Muckett, Phil -- Canas, Xavier -- Zhang, Jisheng -- Rowe, Glenn C -- Buchan, Rachel -- Lu, Han -- Braithwaite, Adam -- Mancini, Massimiliano -- Hauton, David -- Marti, Ramon -- Garcia-Arumi, Elena -- Hubner, Norbert -- Jacob, Howard -- Serikawa, Tadao -- Zidek, Vaclav -- Papousek, Frantisek -- Kolar, Frantisek -- Cardona, Maria -- Ruiz-Meana, Marisol -- Garcia-Dorado, David -- Comella, Joan X -- Felkin, Leanne E -- Barton, Paul J R -- Arany, Zoltan -- Pravenec, Michal -- Petretto, Enrico -- Sanchis, Daniel -- Cook, Stuart A -- 087183/Wellcome Trust/United Kingdom -- MC_U120085815/Medical Research Council/United Kingdom -- MC_U120097112/Medical Research Council/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2011 Oct 5;478(7367):114-8. doi: 10.1038/nature10490.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21979051" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Body Weight/genetics ; Cardiomegaly/*enzymology/genetics/*pathology/physiopathology ; Cell Respiration ; Chromosomes, Mammalian/genetics ; Crosses, Genetic ; Endodeoxyribonucleases/deficiency/genetics/*metabolism ; Female ; Gene Expression Regulation ; Genes, Mitochondrial/genetics ; Hypertrophy, Left Ventricular/enzymology/genetics/pathology/physiopathology ; Lipid Metabolism ; Male ; Mitochondria/genetics/*metabolism/pathology ; Organ Size/genetics ; Quantitative Trait Loci/genetics ; RNA-Binding Proteins/metabolism ; Rats ; Rats, Inbred Strains ; Reactive Oxygen Species/metabolism ; Receptors, Estrogen/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...