ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-24
    Description: Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency 〉 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183507/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183507/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bevilacqua, Laura -- Doly, Stephane -- Kaprio, Jaakko -- Yuan, Qiaoping -- Tikkanen, Roope -- Paunio, Tiina -- Zhou, Zhifeng -- Wedenoja, Juho -- Maroteaux, Luc -- Diaz, Silvina -- Belmer, Arnaud -- Hodgkinson, Colin A -- Dell'osso, Liliana -- Suvisaari, Jaana -- Coccaro, Emil -- Rose, Richard J -- Peltonen, Leena -- Virkkunen, Matti -- Goldman, David -- AA-09203/AA/NIAAA NIH HHS/ -- AA-12502/AA/NIAAA NIH HHS/ -- Z01 AA000301-09/Intramural NIH HHS/ -- Z01 AA000301-10/Intramural NIH HHS/ -- Z99 AA999999/Intramural NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1061-6. doi: 10.1038/nature09629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland 20852, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179162" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Case-Control Studies ; Cell Line ; Female ; Finland ; Founder Effect ; Gene Expression Regulation ; Gene Knockout Techniques ; Genotype ; Humans ; Impulsive Behavior/*genetics ; Male ; Mental Disorders/genetics ; Mice ; Mice, 129 Strain ; Mice, Knockout ; Pedigree ; Polymorphism, Single Nucleotide/genetics ; Receptor, Serotonin, 5-HT2B/*genetics/*metabolism ; Testosterone/blood/cerebrospinal fluid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-23
    Description: The current outbreak of Ebola virus in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled. Several post-exposure interventions have been employed under compassionate use to treat patients repatriated to Europe and the United States. However, the in vivo efficacy of these interventions against the new outbreak strain of Ebola virus is unknown. Here we show that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal haematology, blood chemistry and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered, while the untreated control animals succumbed to the disease. These results represent the first, to our knowledge, successful demonstration of therapeutic anti-Ebola virus efficacy against the new outbreak strain in nonhuman primates and highlight the rapid development of lipid-nanoparticle-delivered siRNA as a countermeasure against this highly lethal human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thi, Emily P -- Mire, Chad E -- Lee, Amy C H -- Geisbert, Joan B -- Zhou, Joy Z -- Agans, Krystle N -- Snead, Nicholas M -- Deer, Daniel J -- Barnard, Trisha R -- Fenton, Karla A -- MacLachlan, Ian -- Geisbert, Thomas W -- U19 AI109711/AI/NIAID NIH HHS/ -- U19AI109711/AI/NIAID NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):362-5. doi: 10.1038/nature14442. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tekmira Pharmaceuticals, Burnaby, British Columbia V5J 5J8, Canada. ; 1] Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas 77550, USA [2] Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77550, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Ebolavirus/classification/*drug effects/*genetics ; Female ; Hemorrhagic Fever, Ebola/pathology/prevention & control/*therapy/*virology ; Humans ; Macaca mulatta/virology ; Male ; Nanoparticles/*administration & dosage ; RNA, Small Interfering/*administration & dosage/pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Treatment Outcome ; Viral Load/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-16
    Description: Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer's disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term 'cistauosis', appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer's disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, Asami -- Shahpasand, Koorosh -- Mannix, Rebekah -- Qiu, Jianhua -- Moncaster, Juliet -- Chen, Chun-Hau -- Yao, Yandan -- Lin, Yu-Min -- Driver, Jane A -- Sun, Yan -- Wei, Shuo -- Luo, Man-Li -- Albayram, Onder -- Huang, Pengyu -- Rotenberg, Alexander -- Ryo, Akihide -- Goldstein, Lee E -- Pascual-Leone, Alvaro -- McKee, Ann C -- Meehan, William -- Zhou, Xiao Zhen -- Lu, Kun Ping -- P30 AG013846/AG/NIA NIH HHS/ -- P30AG13846/AG/NIA NIH HHS/ -- R01AG029385/AG/NIA NIH HHS/ -- R01AG046319/AG/NIA NIH HHS/ -- R01CA167677/CA/NCI NIH HHS/ -- R01HL111430/HL/NHLBI NIH HHS/ -- S10RR017927/RR/NCRR NIH HHS/ -- T32HD040128/HD/NICHD NIH HHS/ -- U01 NS086659/NS/NINDS NIH HHS/ -- U01NS086659-01/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):431-6. doi: 10.1038/nature14658. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Emergency Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; 1] Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02130, USA. ; Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan. ; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Micheli Center for Sports Injury Prevention, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176913" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/complications/prevention & control ; Animals ; Antibodies, Monoclonal/*immunology/*pharmacology/therapeutic use ; Antibody Affinity ; Axons/metabolism/pathology ; Brain/metabolism/pathology ; Brain Injuries/complications/metabolism/*pathology/*prevention & control ; Disease Models, Animal ; Epitopes/chemistry/immunology ; Female ; Humans ; Male ; Mice ; Phosphoproteins/antagonists & inhibitors/biosynthesis/immunology/toxicity ; Stress, Physiological ; Tauopathies/complications/metabolism/pathology/*prevention & control ; tau Proteins/*antagonists & ; inhibitors/biosynthesis/*chemistry/immunology/toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-08-29
    Description: A single-base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ~16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Guo, Yiran -- Zhang, Ze -- Li, Dong -- Xuan, Zhaoling -- Li, Zhuo -- Dai, Fangyin -- Li, Yingrui -- Cheng, Daojun -- Li, Ruiqiang -- Cheng, Tingcai -- Jiang, Tao -- Becquet, Celine -- Xu, Xun -- Liu, Chun -- Zha, Xingfu -- Fan, Wei -- Lin, Ying -- Shen, Yihong -- Jiang, Lan -- Jensen, Jeffrey -- Hellmann, Ines -- Tang, Si -- Zhao, Ping -- Xu, Hanfu -- Yu, Chang -- Zhang, Guojie -- Li, Jun -- Cao, Jianjun -- Liu, Shiping -- He, Ningjia -- Zhou, Yan -- Liu, Hui -- Zhao, Jing -- Ye, Chen -- Du, Zhouhe -- Pan, Guoqing -- Zhao, Aichun -- Shao, Haojing -- Zeng, Wei -- Wu, Ping -- Li, Chunfeng -- Pan, Minhui -- Li, Jingjing -- Yin, Xuyang -- Li, Dawei -- Wang, Juan -- Zheng, Huisong -- Wang, Wen -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Lu, Cheng -- Nielsen, Rasmus -- Zhou, Zeyang -- Wang, Jian -- Xiang, Zhonghuai -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):433-6. doi: 10.1126/science.1176620. Epub 2009 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bombyx/classification/*genetics ; Digestive System/metabolism ; Exocrine Glands/metabolism ; Female ; Gene Expression ; *Genes, Insect ; *Genetic Variation ; *Genome, Insect ; INDEL Mutation ; Linkage Disequilibrium ; Male ; Phylogeny ; Polymorphism, Single Nucleotide ; Principal Component Analysis ; Selection, Genetic ; *Sequence Analysis, DNA ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-14
    Description: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Zhou, Zeyang -- Lu, Cheng -- Cheng, Daojun -- Dai, Fangyin -- Li, Bin -- Zhao, Ping -- Zha, Xingfu -- Cheng, Tingcai -- Chai, Chunli -- Pan, Guoqing -- Xu, Jinshan -- Liu, Chun -- Lin, Ying -- Qian, Jifeng -- Hou, Yong -- Wu, Zhengli -- Li, Guanrong -- Pan, Minhui -- Li, Chunfeng -- Shen, Yihong -- Lan, Xiqian -- Yuan, Lianwei -- Li, Tian -- Xu, Hanfu -- Yang, Guangwei -- Wan, Yongji -- Zhu, Yong -- Yu, Maode -- Shen, Weide -- Wu, Dayang -- Xiang, Zhonghuai -- Yu, Jun -- Wang, Jun -- Li, Ruiqiang -- Shi, Jianping -- Li, Heng -- Li, Guangyuan -- Su, Jianning -- Wang, Xiaoling -- Li, Guoqing -- Zhang, Zengjin -- Wu, Qingfa -- Li, Jun -- Zhang, Qingpeng -- Wei, Ning -- Xu, Jianzhe -- Sun, Haibo -- Dong, Le -- Liu, Dongyuan -- Zhao, Shengli -- Zhao, Xiaolan -- Meng, Qingshun -- Lan, Fengdi -- Huang, Xiangang -- Li, Yuanzhe -- Fang, Lin -- Li, Changfeng -- Li, Dawei -- Sun, Yongqiao -- Zhang, Zhenpeng -- Yang, Zheng -- Huang, Yanqing -- Xi, Yan -- Qi, Qiuhui -- He, Dandan -- Huang, Haiyan -- Zhang, Xiaowei -- Wang, Zhiqiang -- Li, Wenjie -- Cao, Yuzhu -- Yu, Yingpu -- Yu, Hong -- Li, Jinhong -- Ye, Jiehua -- Chen, Huan -- Zhou, Yan -- Liu, Bin -- Wang, Jing -- Ye, Jia -- Ji, Hai -- Li, Shengting -- Ni, Peixiang -- Zhang, Jianguo -- Zhang, Yong -- Zheng, Hongkun -- Mao, Bingyu -- Wang, Wen -- Ye, Chen -- Li, Songgang -- Wang, Jian -- Wong, Gane Ka-Shu -- Yang, Huanming -- Biology Analysis Group -- 1 P50 HG02351/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Southwest Agricultural University, Chongqing Beibei, 400716, China. xiaqy@swau.cq.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591204" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Anopheles/genetics ; Body Patterning/genetics ; Bombyx/*genetics/growth & development/metabolism ; Butterflies/genetics ; Computational Biology ; DNA Transposable Elements ; Drosophila melanogaster/genetics ; Exocrine Glands/metabolism ; Expressed Sequence Tags ; Female ; Genes, Homeobox ; *Genes, Insect ; *Genome ; Immunity, Innate/genetics ; Insect Hormones/genetics ; Insect Proteins/genetics ; Male ; Molecular Sequence Data ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Sex Determination Processes ; Spiders/genetics ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-07-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, Jingmai -- Zheng, Xiaoting -- Zhou, Zhonghe -- England -- Nature. 2013 Jul 11;499(7457):E1-2. doi: 10.1038/nature12368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Vertebrate Evolution and Human Origin, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. jingmai.oconnor@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology/*physiology ; Female ; *Fossils ; Ovarian Follicle/*anatomy & histology/*physiology ; Reproduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-19
    Description: The two groups of archosaurs, crocodilians and birds, form an extant phylogenetic bracket for understanding the reproductive behaviour of dinosaurs. This behaviour is inferred from preserved nests and eggs, and even gravid individuals. Data indicate that many 'avian' traits were already present in Paraves--the clade that includes birds and their close relatives--and that the early evolution of the modern avian form of reproduction was already well on its way. Like living neornithine birds, non-avian maniraptorans had daily oviposition and asymmetrical eggs with complex shell microstructure, and were known to protect their clutches. However, like crocodilians, non-avian maniraptorans had two active oviducts (one present in living birds), relatively smaller eggs, and may not have turned their eggs in the way that living birds do. Here we report on the first discovery of fossilized mature or nearly mature ovarian follicles, revealing a previously undocumented stage in dinosaur reproduction: reproductively active females near ovulation. Preserved in a specimen of the long bony-tailed Jeholornis and two enantiornithine birds from the Early Cretaceous period lacustrine Jehol Biota in northeastern China, these discoveries indicate that basal birds only had one functional ovary, but retained primitive morphologies as a result of their lower metabolic rate relative to living birds. They also indicate that basal birds reached sexual maturity before skeletal maturity, as in crocodiles and paravian dinosaurs. Differences in follicular morphology between Jeholornis and the enantiornithines are interpreted as forming an evolutionary gradient from the reproductive condition in paravian dinosaurs towards neornithine birds. Furthermore, differences between the two enantiornithines indicate that this lineage might also have evolved advanced reproductive traits in parallel to the neornithine lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Xiaoting -- O'Connor, Jingmai -- Huchzermeyer, Fritz -- Wang, Xiaoli -- Wang, Yan -- Wang, Min -- Zhou, Zhonghe -- England -- Nature. 2013 Mar 28;495(7442):507-11. doi: 10.1038/nature11985. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503663" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology/*physiology ; Bone and Bones ; China ; Clutch Size ; Dinosaurs/anatomy & histology/physiology ; Female ; *Fossils ; Ovarian Follicle/*anatomy & histology/*physiology ; Ovulation ; Phylogeny ; Reproduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-17
    Description: Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Xing -- Zhou, Zhonghe -- Dudley, Robert -- Mackem, Susan -- Chuong, Cheng-Ming -- Erickson, Gregory M -- Varricchio, David J -- AR 47364/AR/NIAMS NIH HHS/ -- AR 60306/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1253293. doi: 10.1126/science.1253293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. xu.xing@ivpp.ac.cn. ; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick NIH, Frederick, MD 21702, USA. ; Department of Pathology, University of Southern California, CA 90033, USA. Cheng Kung University, Laboratory for Wound Repair and Regeneration, Graduated Institute of Clinical Medicine, Tainan, 70101, Taiwan. ; Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA. ; Earth Sciences, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification/physiology ; *Dinosaurs/classification ; Feathers/anatomy & histology ; Female ; Flight, Animal ; Fossils ; Male ; Morphogenesis ; Phylogeny ; Reproduction ; Respiratory System/anatomy & histology ; Wings, Animal/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-31
    Description: Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/beta-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zinan -- Tang, Alan T -- Wong, Weng-Yew -- Bamezai, Sharika -- Goddard, Lauren M -- Shenkar, Robert -- Zhou, Su -- Yang, Jisheng -- Wright, Alexander C -- Foley, Matthew -- Arthur, J Simon C -- Whitehead, Kevin J -- Awad, Issam A -- Li, Dean Y -- Zheng, Xiangjian -- Kahn, Mark L -- P01 HL075215/HL/NHLBI NIH HHS/ -- P01 HL120846/HL/NHLBI NIH HHS/ -- P01 NS092521/NS/NINDS NIH HHS/ -- P01NS092521/NS/NINDS NIH HHS/ -- R01 HL094326/HL/NHLBI NIH HHS/ -- R01HL-084516/HL/NHLBI NIH HHS/ -- R01HL094326/HL/NHLBI NIH HHS/ -- R01NS075168/NS/NINDS NIH HHS/ -- T32HL07439/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA. ; Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia. ; Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA. ; Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA. ; Sydney Microscopy &Microanalysis, University of Sydney, Sydney, New South Wales 2050, Australia. ; Division of Cell Signaling and Immunology, University of Dundee, Dundee DD1 5EH, UK. ; Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA. ; The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. ; Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027284" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/metabolism ; Animals ; Animals, Newborn ; Carrier Proteins/genetics/metabolism ; Disease Models, Animal ; Endothelial Cells/enzymology/*metabolism ; Female ; Hemangioma, Cavernous, Central Nervous System/etiology/*metabolism/pathology ; Humans ; Kruppel-Like Transcription Factors/deficiency/*metabolism ; MAP Kinase Kinase Kinase 3/deficiency/*metabolism ; *MAP Kinase Signaling System ; Male ; Mice ; Protein Binding ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...