ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-02
    Description: Topoisomerases regulate DNA topology and are fundamental to many aspects of chromosome metabolism. Their activity involves the transient cleavage of DNA, which, if it occurs near sites of endogenous DNA damage or in the presence of topoisomerase poisons, can result in abortive topoisomerase-induced DNA strand breaks. These breaks feature covalent linkage of the enzyme to the DNA termini by a 3'- or 5'-phosphotyrosyl bond and are implicated in hereditary human disease, chromosomal instability and cancer, and underlie the clinical efficacy of an important class of anti-tumour poisons. The importance of liberating DNA termini from trapped topoisomerase is illustrated by the progressive neurodegenerative disease observed in individuals containing a mutation in tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that cleaves 3'-phosphotyrosyl bonds. However, a complementary human enzyme that cleaves 5'-phosphotyrosyl bonds has not been reported, despite the effect of DNA double-strand breaks containing such termini on chromosome instability and cancer. Here we identify such an enzyme in human cells and show that this activity efficiently restores 5'-phosphate termini at DNA double-strand breaks in preparation for DNA ligation. This enzyme, TTRAP, is a member of the Mg(2+)/Mn(2+)-dependent family of phosphodiesterases. Cellular depletion of TTRAP results in increased susceptibility and sensitivity to topoisomerase-II-induced DNA double-strand breaks. TTRAP is, to our knowledge, the first human 5'-tyrosyl DNA phosphodiesterase to be identified, and we suggest that this enzyme is denoted tyrosyl DNA phosphodiesterase-2 (TDP2).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortes Ledesma, Felipe -- El Khamisy, Sherif F -- Zuma, Maria C -- Osborn, Kay -- Caldecott, Keith W -- 085284/Wellcome Trust/United Kingdom -- BB/C516595/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- C6563/A10192/Cancer Research UK/United Kingdom -- G0600776/Medical Research Council/United Kingdom -- G0901606/Medical Research Council/United Kingdom -- England -- Nature. 2009 Oct 1;461(7264):674-8. doi: 10.1038/nature08444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, Sussex BN1 9RQ, UK. fc55@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Camptothecin/pharmacology ; Cell Extracts/chemistry ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Breaks, Single-Stranded ; *DNA Damage/drug effects ; *DNA Repair ; DNA Topoisomerases/*metabolism ; DNA Topoisomerases, Type I/metabolism ; DNA Topoisomerases, Type II/metabolism ; Etoposide/pharmacology ; Female ; Gene Library ; Genetic Complementation Test ; Humans ; Male ; Mice ; Nuclear Proteins/deficiency/genetics/isolation & purification/*metabolism ; Phosphoric Diester Hydrolases/genetics/metabolism ; Saccharomyces cerevisiae/drug effects/enzymology/genetics/metabolism ; Suppression, Genetic ; Transcription Factors/deficiency/genetics/isolation & purification/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-17
    Description: As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that 'sialidase-sensitive' animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas 'sialidase-insensitive' human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world's population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Liya -- Crawford, Sue E -- Czako, Rita -- Cortes-Penfield, Nicolas W -- Smith, David F -- Le Pendu, Jacques -- Estes, Mary K -- Prasad, B V Venkataram -- AI 080656/AI/NIAID NIH HHS/ -- AI36040/AI/NIAID NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P30 DK056338/DK/NIDDK NIH HHS/ -- P30 DK56338/DK/NIDDK NIH HHS/ -- P41 GM103694/GM/NIGMS NIH HHS/ -- R01 AI080656/AI/NIAID NIH HHS/ -- U54 GM062116/GM/NIGMS NIH HHS/ -- U54 GM062116-01A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 15;485(7397):256-9. doi: 10.1038/nature10996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504179" target="_blank"〉PubMed〈/a〉
    Keywords: ABO Blood-Group System/chemistry/genetics/immunology/*metabolism ; Amino Acid Sequence ; Animals ; CHO Cells ; Cricetinae ; Crystallography, X-Ray ; Erythrocytes/metabolism/virology ; Host Specificity/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; N-Acetylneuraminic Acid/antagonists & inhibitors/chemistry/immunology/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Receptors, Virus/chemistry/genetics/*metabolism ; *Rotavirus/chemistry/classification/metabolism/pathogenicity ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-02-10
    Description: Zhang et al. (Research Articles, 11 November 2005, p. 996) reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39. However, we found that I125-obestatin does not bind GPR39 and observed no effects of obestatin on GPR39-transfected cells in various functional assays (cyclic adenosine monophosphate production, calcium mobilization, and GPR39 internalization). Our results indicate that obestatin is not the cognate ligand for GPR39.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chartrel, N -- Alvear-Perez, R -- Leprince, J -- Iturrioz, X -- Reaux-Le Goazigo, A -- Audinot, V -- Chomarat, P -- Coge, F -- Nosjean, O -- Rodriguez, M -- Galizzi, J P -- Boutin, J A -- Vaudry, H -- Llorens-Cortes, C -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):766; author reply 766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale (INSERM), U413, Laboratory of Cellular and Molecular Neuroendocrinology, and European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; CHO Cells ; Calcium/metabolism ; Cell Membrane/metabolism ; Colforsin/pharmacology ; Cricetinae ; Cricetulus ; Cyclic AMP/metabolism ; Ghrelin ; Humans ; Ligands ; Molecular Sequence Data ; Peptide Hormones/genetics/*metabolism/pharmacology ; Pituitary Gland/cytology/metabolism ; Protein Binding ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-26
    Description: The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Kent E -- Abrar, Muhammad -- Aeby, Greta -- Aronson, Richard B -- Banks, Stuart -- Bruckner, Andrew -- Chiriboga, Angel -- Cortes, Jorge -- Delbeek, J Charles -- Devantier, Lyndon -- Edgar, Graham J -- Edwards, Alasdair J -- Fenner, Douglas -- Guzman, Hector M -- Hoeksema, Bert W -- Hodgson, Gregor -- Johan, Ofri -- Licuanan, Wilfredo Y -- Livingstone, Suzanne R -- Lovell, Edward R -- Moore, Jennifer A -- Obura, David O -- Ochavillo, Domingo -- Polidoro, Beth A -- Precht, William F -- Quibilan, Miledel C -- Reboton, Clarissa -- Richards, Zoe T -- Rogers, Alex D -- Sanciangco, Jonnell -- Sheppard, Anne -- Sheppard, Charles -- Smith, Jennifer -- Stuart, Simon -- Turak, Emre -- Veron, John E N -- Wallace, Carden -- Weil, Ernesto -- Wood, Elizabeth -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):560-3. doi: 10.1126/science.1159196. Epub 2008 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IUCN (International Union for Conservation of Nature) Species Programme Species Survival Commission (SSC), Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA. kcarpent@odu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa/classification/growth & development ; Caribbean Region ; *Climate ; Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; Greenhouse Effect ; Indian Ocean ; Pacific Ocean ; Risk Assessment ; *Seawater ; Species Specificity ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-01
    Description: Local extinctions have cascading effects on ecosystem functions, yet little is known about the potential for the rapid evolutionary change of species in human-modified scenarios. We show that the functional extinction of large-gape seed dispersers in the Brazilian Atlantic forest is associated with the consistent reduction of the seed size of a keystone palm species. Among 22 palm populations, areas deprived of large avian frugivores for several decades present smaller seeds than nondefaunated forests, with negative consequences for palm regeneration. Coalescence and phenotypic selection models indicate that seed size reduction most likely occurred within the past 100 years, associated with human-driven fragmentation. The fast-paced defaunation of large vertebrates is most likely causing unprecedented changes in the evolutionary trajectories and community composition of tropical forests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galetti, Mauro -- Guevara, Roger -- Cortes, Marina C -- Fadini, Rodrigo -- Von Matter, Sandro -- Leite, Abraao B -- Labecca, Fabio -- Ribeiro, Thiago -- Carvalho, Carolina S -- Collevatti, Rosane G -- Pires, Mathias M -- Guimaraes, Paulo R Jr -- Brancalion, Pedro H -- Ribeiro, Milton C -- Jordano, Pedro -- New York, N.Y. -- Science. 2013 May 31;340(6136):1086-90. doi: 10.1126/science.1233774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, Sao Paulo, Brazil. mgaletti@rc.unesp.br〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Arecaceae ; *Biological Evolution ; *Birds ; Brazil ; *Extinction, Biological ; *Feeding Behavior ; *Germination ; Seeds/*anatomy & histology/physiology ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jieqi -- Wegener, Jan Eike -- Huang, Teng-Wei -- Sripathy, Smitha -- De Jesus-Cortes, Hector -- Xu, Pin -- Tran, Stephanie -- Knobbe, Whitney -- Leko, Vid -- Britt, Jeremiah -- Starwalt, Ruth -- McDaniel, Latisha -- Ward, Chris S -- Parra, Diana -- Newcomb, Benjamin -- Lao, Uyen -- Nourigat, Cynthia -- Flowers, David A -- Cullen, Sean -- Jorstad, Nikolas L -- Yang, Yue -- Glaskova, Lena -- Vingeau, Sebastien -- Kozlitina, Julia -- Yetman, Michael J -- Jankowsky, Joanna L -- Reichardt, Sybille D -- Reichardt, Holger M -- Gartner, Jutta -- Bartolomei, Marisa S -- Fang, Min -- Loeb, Keith -- Keene, C Dirk -- Bernstein, Irwin -- Goodell, Margaret -- Brat, Daniel J -- Huppke, Peter -- Neul, Jeffrey L -- Bedalov, Antonio -- Pieper, Andrew A -- P30 AI036211/AI/NIAID NIH HHS/ -- P30 CA138292/CA/NCI NIH HHS/ -- P30 ES005605/ES/NIEHS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 AG031892/AG/NIA NIH HHS/ -- R01 HD062553/HD/NICHD NIH HHS/ -- S10 RR024574/RR/NCRR NIH HHS/ -- T32 AG000183/AG/NIA NIH HHS/ -- T32 HL092332/HL/NHLBI NIH HHS/ -- U01 HL100395/HL/NHLBI NIH HHS/ -- U54 HD083092/HD/NICHD NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):E1-4. doi: 10.1038/nature14444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Gottingen, Robert-Koch-Strasse 40, 37075 Gottingen, Germany. ; 1] Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA [2] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Graduate Program of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. ; Graduate Program of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; Department of Cell &Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA. ; Institute for Cellular and Molecular Immunology; University of Gottingen Medical School, Humboldtallee 34, 37073 Gottingen, Germany. ; 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; 1] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA [3] Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA [4] Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA [5] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [6] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA. ; 1] Jan and Dan Duncan Neurological Research Institute (Texas Children's Hospital), Baylor College of Medicine, Houston, Texas 77030, USA [2] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA [4] Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA [5] Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA [6] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98105, USA. ; 1] Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [2] Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [3] Veterans Affairs, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA [4] Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993969" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Progression ; Female ; Male ; Methyl-CpG-Binding Protein 2/*metabolism ; Microglia/*cytology/*physiology ; Rett Syndrome/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-28
    Description: The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kafsack, Bjorn F C -- Rovira-Graells, Nuria -- Clark, Taane G -- Bancells, Cristina -- Crowley, Valerie M -- Campino, Susana G -- Williams, April E -- Drought, Laura G -- Kwiatkowski, Dominic P -- Baker, David A -- Cortes, Alfred -- Llinas, Manuel -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 090770/Wellcome Trust/United Kingdom -- 094752/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- G0600230/Medical Research Council/United Kingdom -- G0600718/Medical Research Council/United Kingdom -- J005398/Medical Research Council/United Kingdom -- P50GM071508/GM/NIGMS NIH HHS/ -- R01 AI076276/AI/NIAID NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 13;507(7491):248-52. doi: 10.1038/nature12920. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.). ; 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain. ; 1] Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK [2] Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK. ; Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain. ; 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.). ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Wellcome Trust Sanger Centre for Human Genetics, Oxford OX3 7BN, UK. ; 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalonia, Spain. ; 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572369" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Female ; Gene Expression Regulation/*genetics ; Gene Silencing ; Genes, Protozoan/genetics ; Genome, Protozoan/genetics ; Germ Cells/cytology/*growth & development/metabolism ; Malaria/*parasitology ; Male ; Parasites/cytology/genetics/*physiology ; Plasmodium falciparum/cytology/*genetics/physiology ; Protozoan Proteins/genetics/metabolism ; Reproduction, Asexual ; Sex Differentiation/genetics ; Sexual Development/*genetics ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...