ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, S J -- Eisenberg, J F -- Miyamoto, M -- Hedges, S B -- Kumar, S -- Wilson, D E -- Menotti-Raymond, M -- Murphy, W J -- Nash, W G -- Lyons, L A -- Menninger, J C -- Stanyon, R -- Wienberg, J -- Copeland, N G -- Jenkins, N A -- Gellin, J -- Yerle, M -- Andersson, L -- Womack, J -- Broad, T -- Postlethwait, J -- Serov, O -- Bailey, E -- James, M R -- Marshall Graves, J A -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):463-78.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Frederick, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Chromosome Mapping ; Chromosome Painting ; *Genome ; *Genome, Human ; Humans ; Mammals/*genetics ; Nucleic Acid Hybridization ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-26
    Description: Drosophila Clock (dClk) is rhythmically expressed, with peaks in mRNA and protein (dCLK) abundance early in the morning. dClk mRNA cycling is shown here to be regulated by PERIOD-TIMELESS (PER-TIM)-mediated release of dCLK- and CYCLE (CYC)-dependent repression. Lack of both PER-TIM derepression and dCLK-CYC repression results in high levels of dClk mRNA, which implies that a separate dClk activator is present. These results demonstrate that the Drosophila circadian feedback loop is composed of two interlocked negative feedback loops: a per-tim loop, which is activated by dCLK-CYC and repressed by PER-TIM, and a dClk loop, which is repressed by dCLK-CYC and derepressed by PER-TIM.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glossop, N R -- Lyons, L C -- Hardin, P E -- NS-31214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):766-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry and Biological Clocks Program, University of Houston, Houston, TX 77204-5513, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531060" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; CLOCK Proteins ; *Circadian Rhythm ; Dimerization ; Drosophila/*genetics/metabolism ; *Drosophila Proteins ; Feedback ; *Gene Expression Regulation ; Genes, Insect ; Insect Proteins/genetics ; Models, Genetic ; Mutation ; Nuclear Proteins/metabolism ; Period Circadian Proteins ; RNA, Messenger/genetics/metabolism ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-07-21
    Description: Genetic variability of Plasmodium falciparum underlies its transmission success and thwarts efforts to control disease caused by this parasite. Genetic variation in antigenic, drug resistance, and pathogenesis determinants is abundant, consistent with an ancient origin of P. falciparum, whereas DNA variation at silent (synonymous) sites in coding sequences appears virtually absent, consistent with a recent origin of the parasite. To resolve this paradox, we analyzed introns and demonstrated that these are deficient in single-nucleotide polymorphisms, as are synonymous sites in coding regions. These data establish the recent origin of P. falciparum and further provide an explanation for the abundant diversity observed in antigen and other selected genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, S K -- Barry, A E -- Lyons, E J -- Nielsen, K M -- Thomas, S M -- Choi, M -- Thakore, S S -- Day, K P -- Wirth, D F -- Hartl, D L -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):482-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Harvard-Oxford Malaria Genome Diversity Project, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463913" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Agriculture ; Alternative Splicing ; Animals ; Base Sequence ; *Biological Evolution ; Genes, Protozoan ; *Genetic Variation ; Humans ; *Introns ; Malaria, Falciparum/epidemiology/parasitology/transmission ; *Microsatellite Repeats ; Molecular Sequence Data ; Mutation ; Plasmodium/genetics ; Plasmodium falciparum/*genetics ; *Polymorphism, Single Nucleotide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-06-20
    Description: The shaker-2 mouse mutation, the homolog of human DFNB3, causes deafness and circling behavior. A bacterial artificial chromosome (BAC) transgene from the shaker-2 critical region corrected the vestibular defects, deafness, and inner ear morphology of shaker-2 mice. An unconventional myosin gene, Myo15, was discovered by DNA sequencing of this BAC. Shaker-2 mice were found to have an amino acid substitution at a highly conserved position within the motor domain of this myosin. Auditory hair cells of shaker-2 mice have very short stereocilia and a long actin-containing protrusion extending from their basal end. This histopathology suggests that Myo15 is necessary for actin organization in the hair cells of the cochlea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Probst, F J -- Fridell, R A -- Raphael, Y -- Saunders, T L -- Wang, A -- Liang, Y -- Morell, R J -- Touchman, J W -- Lyons, R H -- Noben-Trauth, K -- Friedman, T B -- Camper, S A -- Z01 DC 00035/DC/NIDCD NIH HHS/ -- Z01 DC 00038/DC/NIDCD NIH HHS/ -- Z01 DC 02407/DC/NIDCD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 May 29;280(5368):1444-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, 4701 MSRB III, University of Michigan, 1500 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9603735" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; Chromosomes, Bacterial ; Deafness/*genetics/pathology/therapy ; Ear, Inner/metabolism ; Female ; Genetic Complementation Test ; Hair Cells, Auditory/ultrastructure ; Humans ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mice, Transgenic ; Myosins/chemistry/*genetics/metabolism ; Phenotype ; Point Mutation ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-29
    Description: Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from approximately 750 to approximately 635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Rouxel, Olivier J -- Bekker, Andrey -- Lalonde, Stefan V -- Konhauser, Kurt O -- Reinhard, Christopher T -- Lyons, Timothy W -- England -- Nature. 2010 Oct 28;467(7319):1088-90. doi: 10.1038/nature09485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*metabolism ; Atmosphere/chemistry ; *Biological Evolution ; Ferric Compounds/analysis/metabolism ; Geologic Sediments/chemistry ; History, Ancient ; Ice Cover ; Iron/analysis/metabolism ; Marine Biology ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Phosphates/analysis/*metabolism ; Phosphorus/analysis/metabolism ; Seawater/chemistry ; Silicon Dioxide/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-02-15
    Description: Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562698/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562698/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Nicole -- Westbrook, M Jody -- Young, Susan L -- Kuo, Alan -- Abedin, Monika -- Chapman, Jarrod -- Fairclough, Stephen -- Hellsten, Uffe -- Isogai, Yoh -- Letunic, Ivica -- Marr, Michael -- Pincus, David -- Putnam, Nicholas -- Rokas, Antonis -- Wright, Kevin J -- Zuzow, Richard -- Dirks, William -- Good, Matthew -- Goodstein, David -- Lemons, Derek -- Li, Wanqing -- Lyons, Jessica B -- Morris, Andrea -- Nichols, Scott -- Richter, Daniel J -- Salamov, Asaf -- Sequencing, J G I -- Bork, Peer -- Lim, Wendell A -- Manning, Gerard -- Miller, W Todd -- McGinnis, William -- Shapiro, Harris -- Tjian, Robert -- Grigoriev, Igor V -- Rokhsar, Daniel -- R01 CA058530/CA/NCI NIH HHS/ -- R01 CA058530-14/CA/NCI NIH HHS/ -- R01 GM077197/GM/NIGMS NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- R37 HD028315/HD/NICHD NIH HHS/ -- England -- Nature. 2008 Feb 14;451(7180):783-8. doi: 10.1038/nature06617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and the Center for Integrative Genomics, University of California, Berkeley, California 94720, USA. nking@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18273011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Conserved Sequence ; Eukaryotic Cells/classification/cytology/*metabolism ; Evolution, Molecular ; Extracellular Matrix/metabolism ; Gene Expression Regulation ; Genetic Speciation ; Genome/*genetics ; Hedgehog Proteins/chemistry/genetics ; Humans ; Introns/genetics ; Phosphotyrosine/metabolism ; *Phylogeny ; Protein Structure, Tertiary/genetics ; Receptors, Notch/chemistry/genetics ; Signal Transduction/genetics ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- Reinhard, Christopher T -- England -- Nature. 2009 Sep 10;461(7261):179-81. doi: 10.1038/461179a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Timothy W. Lyons and Christopher T. Reinhard are in the Department of Earth Sciences, University of California, Riverside, California 92521, USA. timothy.lyons@ucr.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; Bacteria/metabolism ; Chromium/*analysis/chemistry ; Chromium Isotopes ; History, Ancient ; Iron/analysis ; Manganese Compounds/metabolism ; Oxidation-Reduction ; Oxides/metabolism ; Oxygen/*analysis/*metabolism ; Seawater/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-11
    Description: In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the epsilon-amino group of K40 on alpha-tubulin is a conserved PTM on the luminal side of microtubules that was discovered in the flagella of Chlamydomonas reinhardtii. Studies on the significance of microtubule acetylation have been limited by the undefined status of the alpha-tubulin acetyltransferase. Here we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases and required for the function of touch receptor neurons in Caenorhabditis elegans, acts as a K40-specific acetyltransferase for alpha-tubulin. In vitro, MEC-17 exclusively acetylates K40 of alpha-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R alpha-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralogue W06B11.1 are redundantly required for acetylation of MEC-12 alpha-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of alpha-tubulin, the only PTM known to occur on the luminal surface of microtubules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938957/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938957/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akella, Jyothi S -- Wloga, Dorota -- Kim, Jihyun -- Starostina, Natalia G -- Lyons-Abbott, Sally -- Morrissette, Naomi S -- Dougan, Scott T -- Kipreos, Edward T -- Gaertig, Jacek -- R01 AI067981/AI/NIAID NIH HHS/ -- R01 AI067981-05/AI/NIAID NIH HHS/ -- R01 GM074212/GM/NIGMS NIH HHS/ -- R01 GM074212-03/GM/NIGMS NIH HHS/ -- R01 GM089912/GM/NIGMS NIH HHS/ -- R01 GM089912-01/GM/NIGMS NIH HHS/ -- R01AI067981/AI/NIAID NIH HHS/ -- R01GM074212/GM/NIGMS NIH HHS/ -- R01GM089912/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):218-22. doi: 10.1038/nature09324.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829795" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/*metabolism ; Animals ; Caenorhabditis elegans/*enzymology/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Cell Line ; Dipodomys ; Humans ; Protozoan Proteins/genetics/metabolism ; Tetrahymena/metabolism ; Touch ; Tubulin/chemistry/*metabolism ; Zebrafish/embryology/metabolism ; Zebrafish Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-29
    Description: High-resolution chemostratigraphy reveals an episode of enrichment of the redox-sensitive transition metals molybdenum and rhenium in the late Archean Mount McRae Shale in Western Australia. Correlations with organic carbon indicate that these metals were derived from contemporaneous seawater. Rhenium/osmium geochronology demonstrates that the enrichment is a primary sedimentary feature dating to 2501 +/- 8 million years ago (Ma). Molybdenum and rhenium were probably supplied to Archean oceans by oxidative weathering of crustal sulfide minerals. These findings point to the presence of small amounts of O2 in the environment more than 50 million years before the start of the Great Oxidation Event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anbar, Ariel D -- Duan, Yun -- Lyons, Timothy W -- Arnold, Gail L -- Kendall, Brian -- Creaser, Robert A -- Kaufman, Alan J -- Gordon, Gwyneth W -- Scott, Clinton -- Garvin, Jessica -- Buick, Roger -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1903-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. anbar@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901330" target="_blank"〉PubMed〈/a〉
    Keywords: Australia ; Geologic Sediments/*chemistry ; Isotopes/analysis ; Molybdenum/analysis ; Oceans and Seas ; Osmium/analysis ; Oxidation-Reduction ; *Oxygen/analysis ; Rhenium/analysis ; Seawater/chemistry ; Sulfur/analysis ; Sulfur Isotopes/analysis ; Temperature ; Uranium/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):923-4. doi: 10.1126/science.1162870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, CA 92521, USA. timothy.lyons@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703731" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Biological Evolution ; Geologic Sediments/chemistry ; Hydrogen Sulfide/analysis ; Ice Cover ; Iron/*analysis ; Oceans and Seas ; Oxygen/*analysis ; Seawater/*chemistry ; Sulfates/analysis ; Sulfides/analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...