ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-203X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of the red alga Cyanidium caldarium were preincubated with 5 mmol 1−1 levulinic acid (LA) and subsequently incubated with 14C-labelled haem (5.67 Bq nmol−1). Phycocyanin was isolated. The specific radio-activity of its chromophore phycocyanobilin (PCB) was determined after cleavage and purification by thin layer chromatography. The percentage of PCB formed from labelled haem within 0.5 h was considerably higher in LA treated cells than in non-treated controls. This difference disappeared after prolonged incubation (16.5 h) with haem. The results are interpreted as possible incorporation of haem into preexisting apoprotein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5168
    Keywords: triiodothyronine ; trout ; low pH ; Al ; tissue T3 extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tissue T3 (3,5,3′-triiodo-L-thyronine) concentrations were measured in rainbow trout, Salmo gairdneri, after digestion by Pronase or collagenase and extraction with ethanolic ammonia (99:1, v/v) followed by 2N NH4OH and chloroform. Recoveries of [125I]T3 administered in vivo or in vitro were high and consistent and there was close parallelism between sample dilutions and the radioimmunoassay curve, but recoveries of unlabeled T3 administered in vitro were low and variable. Alternatively, trout were brought to isotopic equilibrium by [125I]T3 infusion for 96 h, the extracted [125I]T3 determined by gel filtration and the tissue T3 content calculated from the specific activity of plasma [125I]T3. By the latter method, tissue T3 concentrations were: intestine (4.2 ng/g), kidney (2.5), liver (2.8), stomach (1.5), heart (1.0), muscle (0.7), gill (0.6) and skin (0.3). Muscle (67% of body weight) comprised the largest tissue T3 pool (82% of all tissues examined). Seven days exposure of trout to water acidified with H2SO4 (pH 4.8) or acidified water containing aluminum (21.6 mM), decreased tissue T3 content generally and particularly in muscle (14% of controls). In conclusion, skeletal muscle is the largest T3 tissue pool and seems highly responsive to altered physiologic state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Reviews in fish biology and fisheries 3 (1993), S. 299-347 
    ISSN: 1573-5184
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We have reviewed the stages in teleost thyroid function and its regulation, from the initial biosynthesis of the TH to their eventual interaction with putative receptors. TH biosynthesis depends on an adequate plasma iodide level, determined partly by dietary iodide and partly by active branchial iodide uptake from the water, Pulse-injected radioiodide can be used to evaluate thyroidal iodide uptake, aspects of TH biosynthesis and TH thyroidal secretion. However, owing to variable plasma iodide levels, care is required in interpretating these parameters. TH biosynthesis, thyroglobulin properties and intrathyroidal secretion mechanisms have received limited recent attention. Histological indices of thyroid tissue changes, while useful in many situations, do not always correlate with more direct estimates of thyroidal secretion and can be misleading. Thyroid function is regulated by the hypothalamo-pituitary-thyroid axis, but neither the identities of the hypothalamic factors nor a reliable immunoassay for TSH have been established. Currently, activity of the hypothalamic-pituitary axis is usually determined by pituitary thyrotrope histological appearance or bioassay of pituitary TSH. Plasma free T4 feeds back at both the pituitary and hypothalamic levels and inhibits TSH release. Thyroidal T4 secretory activity is presumably adjusted to maintain a constant plasma T4level according to physiologic state. Plasma T4 is probably the most commonly used index of thyroidal status. However, (1) T4 is probably not the active form of TH, (2) the T4 plasma level may be influenced by the binding properties of plasma proteins, and (3) the T4 concentration alone makes no provision for the rate of T4 turnover in plasma. The most practical way to measure thyroidal T4SR is to determine plasma T4DR, and assuming steady-state conditions, equate it to T4SR. The T4DR is determined from kinetic studies employing*T4, which also enable estimates of sizes of vascular and extravascular T4 pools and their rates of exchange. Excretion of T4 or its derivatives in urine or bile can be determined also. A high proportion of T4 is enzymatically monodeiodinated in liver and other tissues, generating T3 for local (intracellular) and vascular systemic compartments. Bothin vivo andin vitro methods have been used to quantify T4 deiodinase activity, which is highly responsive to physiologic state and environmental variables. T3 production is inhibited by a moderate T3 excess indicating an autoregulatory system, whereby tissue T3 levels are maintained at a set-point appropriate for a particular physiologic state. The rate of T3 production provides an informative measure of thyroidal status in a given tissue. However, other pathways also contribute to the maintenance of T3 homeostasis at a particular set-point. These include the rate of T3 degradation to 3,3′-T2, the rate of T4 substrate diversion to rT3 (an inactive isomer) and by the excretion of parent compounds or conjugates in bile and urine. Potential losses across branchial or integumentary surfaces have yet to be evaluated. The most fundamental measure of thyroidal status is represented by the amount of T3 saturably bound to receptors/nucleus for the cell type of interest. This is estimated most accurately in double isotope studies in which T3 contributions from both vascular and intracellular compartments are evaluated. Less satisfactory but meaningful indices of T3 availability to receptor sites may be obtained from the plasma T3 (or free T3) level and from the tissue T3 level. The former is appropriate if the cell type in question obtains its T3 primarily from plasma; the latter should be measured if the cell type derives its T3 mainly through intracellular deiodinase activity. If the proportion of vascular T3/intracellular T3 bound to receptors is known, it may indicate the degree of receptor activation. However, even cytosolic T3 levels may not vary in proportion to nuclear T3 levels. Differences in thyroidal function between teleosts and homeotherms can be attributed to distinctive strategies in iodide economy and to fundamental differences in control of thyroidal status. Owing to more certain iodide availability (branchial iodide pump and plasma iodide-binding proteins), teleosts are probably more liberal in their iodide use and have less efficient mechanisms for recovery and retention of hormonal iodide than homeotherms. Also, primary control of teleost thyroidal function appears peripheral. It is the finely regulated conversion of T4 to T3 in tissues which may largely determine the T4 secretion rate. Thus, T4, as a prohormone, may be produced more to satisfy the substrate needs for T4 conversion rather than to drive T3 production. Because TH are mainly implicated in tissue- or cell-specific processes involved in development, growth and reproduction in teleosts, it may be advantageous for their thyroidal status to be determined locally through T4-to-T3 deiodination. In homeotherms, primary control is mainly central through the hypothalamic-pituitary axis, which regulates thyroidal secretion of T4 and significant amounts of T3. The level of T4 (free T4) is believed to drive the production of T3 in most peripheral tissues. Because TH are extensively involved in the systemically integrated adjustment of basal metabolic rate in homeotherms, it may have been advantageous to evolve a system leaning towards central control by the hypothalamus, the brain centre associated with thermoregulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 22 (1988), S. 69-77 
    ISSN: 1573-5133
    Keywords: Acid ; Metals ; Ultrastructure ; Olfaction ; Electrical response ; Pollution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis The effects of acid ((H2SO4) and aluminum AIKSO4 in acidified water on rainbow trout, Salmo gairdneri, olfactory organ were examined using scanning electron microscopy and electrophysiology. Exposure to pH 4.7 resulted in an increase in the number of mucus droplets over parts of the olfactory epithelium, primarily along the ridges of the secondary folds. The addition of aluminum (5.0, 9.5, 20.0 µmol · 1−1) at pH 4.7 resulted in loss of receptor cell cilia, irregularly shaped olfactory knobs, clumped microvilli and swellings on microridge cells. Electrical responses recorded from the olfactory nerve in response to the amino acid L-serine were similar to controls in fish exposed to acidified water. When fish were exposed to acidified water and aluminum the response was depressed. These morphological and electrophysiological changes could be used to indicate metal-induced stress in fish from natural ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 33 (1993), S. 81-90 
    ISSN: 1741-2765
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at resonance. Fatigue crack propagation is measured by detecting the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever. Experimental data are presented demonstrating time-dependent crack growth in silicon. Crack extensions of 10 to 300 nm have been measured with a resolution of approximately 2.5 nm, and crack tip velocities as low as 2.1×10−14 m/s. It is postulated that static fatigue of the native surface silica layer is the mechanism for crack growth. The methodology established here is generic in concept, permitting sensitive measurement of crack growth in larger fatigue specimens as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-06-01
    Print ISSN: 0014-4851
    Electronic ISSN: 1741-2765
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 1988-05-01
    Print ISSN: 0921-8971
    Electronic ISSN: 1573-5176
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...