ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-06
    Description: Air quality on the east coast of Peninsular Malaysia is influenced by local anthropogenic and biogenic emissions as well as marine air masses from the South China Sea and aged emissions transported from highly polluted East Asian regions during the winter monsoon season. An atmospheric observation tower has been constructed on this coastline at the Bachok Marine Research Station. Daily PM2.5 samples were collected from the top of the observation tower over a 3-week period, and ion chromatography was used to make time-resolved measurements of major atmospheric ions present in aerosol. SO42- was found to be the most dominant ion present and on average made up 66 % of the total ion content. Predictions of aerosol pH were made using the ISORROPIA II thermodynamic model, and it was estimated that the aerosol was highly acidic, with pH values ranging from −0.97 to 1.12. A clear difference in aerosol composition was found between continental air masses originating from industrialised regions of East Asia and marine air masses predominantly influenced by the South China Sea. For example, elevated SO42- concentrations and increased Cl− depletion were observed when continental air masses that had passed over highly industrialised regions of East Asia arrived at the measurement site. Correlation analyses of the ionic species and assessment of ratios between different ions provided an insight into common sources and formation pathways of key atmospheric ions, such as SO42-, NH4+ and C2O42-. To our knowledge, time-resolved measurements of water-soluble ions in PM2.5 are virtually non-existent in rural locations on the east coast of Peninsular Malaysia. Overall this dataset contributes towards a better understanding of atmospheric composition in the Maritime Continent, a region of the tropics that is vulnerable to the effects of poor air quality, largely as a result of rapid industrialisation in East Asia.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-26
    Description: Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC. During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively. The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D) data of the single monochromator systems can be evaluated for zenith angles less than 70°, which was satisfied by nearly all airborne measurements during both campaigns. The comparison of the airborne measurements with corresponding simulations is presented for the total, downward and upward flux during selected clear sky periods of both campaigns. The compliance between the measured (from three aircraft) and simulated downward and total flux profiles lies in the range of ±15%.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-01
    Description: Chemical and aerosol processes in the transition from closed- to open-cell circulation in the remote, cloudy marine boundary layer are explored. It has previously been shown that precipitation can initiate a transition from the closed- to the open-cellular state, but that the boundary layer cannot maintain this open-cell state without a resupply of cloud condensation nuclei (CCN). Potential sources of CCN include wind-driven production of sea salt from the ocean, nucleation from the gas phase, and entrainment from the free troposphere. In order to investigate CCN sources in the marine boundary layer and their role in supplying new particles, we have coupled in detail chemical, aerosol, and cloud processes in the WRF/Chem model, and added state-of-the-art representations of sea salt emissions and aerosol nucleation. We conduct numerical simulations of the marine boundary layer in the transition from a closed- to an open-cell state. Results are compared with observations in the Southeast Pacific boundary layer during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The transition from the closed- to the open-cell state generates conditions that are conducive to nucleation by forming a cloud-scavenged, ultra-clean layer below the inversion base. Open cell updrafts loft dimethyl sulfide from the ocean surface into the ultra-clean layer, where it is oxidized during daytime to SO2 and subsequently to H2SO4. Low H2SO4 condensation sink values in the ultra-clean layer allow H2SO4 to rise to concentrations at which aerosol nucleation produces new aerosol in significant numbers. The existence of the ultra-clean layer is confirmed by observations. We find that the observed DMS flux from the ocean in the VOCALS-REx region can support a nucleation source of aerosol in open cells that exceeds sea salt emissions in terms of the number of particles produced. The freshly nucleated, nanometer-sized aerosol particles need, however, time to grow to sizes large enough to act as CCN. In contrast, mechanical production of particles from the ocean surface by near-surface winds provides a steady source of larger particles that are effective CCN at a rate exceeding a threshold for maintenance of open-cell circulation. Entrainment of aerosol from the free troposphere contributes significantly to boundary layer aerosol for the considered VOCALS-REx case, but less than sea salt aerosol emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-31
    Description: Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO2) and non-sea-salt sulfate aerosols (SO42−). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship Ronald H. Brown and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W) to a remote marine atmosphere (85° W). While SO42− and SO2 concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (~800 and 80 pptv, respectively), their concentrations rapidly decreased west of 78° W (~100 and 25 pptv). In the remote region, entrainment from the free troposphere (FT) increased MBL SO2 burden at a rate of 0.05 ± 0.02 μmoles m−2 day−1 and diluted MBL SO42 burden at a rate of 0.5 ± 0.3 μmoles m−2 day−1, while the sea-to-air DMS flux (3.8 ± 0.4 μmoles m−2 day−1) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO2 removal and in situ SO42− production. Surface SO42− concentration in the remote MBL displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and decaying for the rest of the day. We theorize that the increase in SO42− was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO42−.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-21
    Description: The wet removal of black carbon aerosol (BC) in the atmosphere is a crucial factor in determining its atmospheric lifetime and thereby the vertical and horizontal distributions, dispersion on local and regional scales, and the direct, semi-direct and indirect radiative forcing effects. The in-cloud scavenging and wet deposition rate of freshly emitted hydrophobic BC will be increased on acquisition of more-hydrophilic components by coagulation or coating processes. The lifetime of BC is still subject to considerable uncertainty for most of the model inputs, which is largely due to the insufficient constraints on the BC hydrophobic-to-hydrophilic conversion process from observational field data. This study was conducted at a site along UK North Norfolk coastline, where the BC particles were transported from different regions within Western Europe. A hygroscopicity tandem differential mobility analyser (HTDMA) was coupled with a single particle soot photometer (SP2) to measure the hygroscopic properties of BC particles and associated mixing state in real time. In addition, a Soot Particle AMS (SP-AMS) measured the chemical compositions of additional material associated with BC particles. The ensemble of BC particles persistently contained a less-hygroscopic mode at a growth factor (gf) of around 1.05 at 90% RH (dry diameter 163 nm). Importantly, a more-hygroscopic mode of BC particles was observed throughout the experiment, the gf of these BC particles extended up to ~1.4–1.6 with the minimum between this and the less hygroscopic mode at a gf ~1.25, or equivalent effective hygroscopicity parameter κ ~0.1. The gf of BC particles (gfBC) was highly influenced by the composition of associated soluble material: increases of gfBC were associated with secondary inorganic components, and these increases were more pronounced when ammonium nitrate was in the BC particles; however the presence of secondary organic matter suppressed the gfBC below that of pure inorganics. The Zdanovskii-Stokes-Robinson (ZSR) mixing rule captures the hygroscopicity contributions from different compositions within ±30% compared to the measured results, however is subject to uncertainty due to the complex morphology of BC component and potential artefacts associated with semivolatile particles measured with the HTDMA. This study provides detailed insights on BC hygroscopicity associated with its mixing state, and the results will importantly constrain the microphysical mixing schemes of BC as used by a variety of high level models. In particular, this provides direct evidence to highlight the need to consider ammonium nitrate ageing of BC particles because this will result in particles becoming hydrophilic on much shorter timescales than for sulphate formation, which is often the only mechanism considered.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-12-05
    Description: Peroxy radicals (HO2+Σ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-09-07
    Description: An automated gas chromatograph with sample pre-concentration for the measurement of peroxyacetylnitrate (PAN) was constructed with a minimum detection limit below 1 pptv. This instrument was deployed at the British Antarctic Survey's Halley Research Station, Antarctica (75.6° S, 26.6° W) as part of the CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) campaign. Hourly measurements were carried out between July 2004 and February 2005 with observed maximum and minimum mixing ratios of 52.3 and
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-17
    Description: Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR) C-130 near Christmas Island (2° N, 157° W) during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE). In order to tightly constrain the scalar budget of DMS, vertical eddy fluxes were measured at various levels in the marine boundary layer (MBL) from ~30 m to the top of the mixed layer (~500 m) providing improved accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well-known diurnal cycle, ranging from 50–95 pptv in the daytime to 90–110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for ~7.4 ppt hr −1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr−1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens.) The observed ocean flux of DMS averaged 3.1 (±1.5) μmol m−2 d−1, and generally decreased throughout the sunlit hours. Over the entire mission, the horizontal advection contribution to the overall budget was merely -0.1 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1.2 to 2.5 ppt hr−1 , indicating a patchy and variable surface seawater DMS distribution, and thus needs to be accounted for in budget studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-01
    Description: The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20° S parallel between 70° W and 85° W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, sulphur dioxide and ozone were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients in aerosol and trace gas concentrations were observed to be associated with strong gradients in cloud droplet number. The FT was often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore – coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75° W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. Analysis of intra-campaign variability in atmospheric composition was not found to be significantly correlated with observed low-frequency variability in the large scale flow pattern; campaign-average interquartile ranges of CO, SO2 and O3 concentrations at all longitudes were observed to dominate over much smaller differences in median concentrations calculated between periods of different flow regimes. The campaign climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosol-cloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx. To this end, our results are discussed in terms of coastal, transitional and remote spatial regimes in the MBL and FT and a gridded dataset are provided as a resource.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-29
    Description: We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...