ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-13
    Description: Maaz et al . argue that inconsistencies across scales of observation undermine our working hypothesis that soil NO x emissions have been substantially overlooked in California; however, the core issues they raise are already discussed in our manuscript. We agree that point measurements cannot be reliably used to estimate statewide soil NO x emissions—the principal motivation behind our new modeling/airplane approach. Maaz et al .’s presentation of fertilizer-based emission factors (a nonmechanistic scaling of point measures to regions based solely on estimated nitrogen fertilizer application rates) includes no data from California or other semiarid sites, and does not explicitly account for widely known controls of climate, soil, and moisture on soil NO x fluxes. In contrast, our model includes all of these factors. Finally, the fertilizer sales data that Maaz et al . highlight are known to suffer from serious errors and do not offer a logically more robust pathway for spatial analysis of NO x emissions from soil.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-01
    Description: Nitrogen oxides (NO x = NO + NO 2 ) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2010-09-17
    Description: To better understand the processing of biogenic VOCs (BVOCs) in the pine forests of the US Sierra Nevada, we measured HCHO at Blodgett Research Station using Quantum Cascade Laser Spectroscopy (QCLS) during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) of late summer 2007. Four days of the experiment exhibited particularly copious HCHO, with midday peaks between 15–20 ppbv, while the other days developed delayed maxima between 8–14 ppbv in the early evening. From the expansive photochemical data set, we attempt to explain the observed HCHO concentrations by quantifying the various known photochemical production and loss terms in its chemical budget. Overall, known chemistry predicts a factor of 3–5 times less HCHO than observed. By examining diurnal patterns of the various budget terms we conclude that, during the high HCHO period, local, highly reactive oxidation chemistry produces an abundance of formaldehyde at the site. The results support the hypothesis of previous work at Blodgett Forest suggesting that large quantities of oxidation products, observed directly above the ponderosa pine canopy, are evidence of profuse emissions of very reactive volatile organic compounds (VR-VOCs) from the forest. However, on the majority of days, under generally cooler and more moist conditions, lower levels of HCHO develop primarily influenced by the influx of precursors transported into the region along with the Sacramento plume.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-15
    Description: In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE) model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007). In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes. CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH) concentrations observed during a warm (~29 °C) period. Modeled fluxes of acyl peroxy nitrates (APN) are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN) fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy) species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be only weakly coupled with the upper canopy. Future efforts to model forest-atmosphere exchange will require a more mechanistic understanding of non-stomatal deposition and a more thorough characterization of in-canopy mixing processes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-16
    Description: Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-18
    Description: The atmospheric boundary layer (ABL) height (zi) over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry) Experiment. The zi values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007) and rawinsondes (2009) under unstable conditions (z/L 〈 0) at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h) with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L 〉 0) is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007), although it was observed to only vary from 60–80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation) to southerlies in a layer ~1–2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-01-25
    Description: Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio) from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain CO2ff emissions if transport uncertainties are reduced.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-23
    Description: Aircraft sampling of the stratocumulus-topped boundary layer (STBL) during the Physics of Stratocumulus Top (POST) experiment was primarily achieved using sawtooth flight patterns, during which the atmospheric layer 100 m above and below cloud top was sampled at a frequency of once every 2 min. The large data set that resulted from each of the 16 flights document the complex structure and variability of this interfacial region in a variety of conditions. In this study, we first describe some properties of the entrainment interface layer (EIL), where strong gradients in turbulent kinetic energy (TKE), potential temperature and moisture can be found. We find that defining the EIL by the first two properties tends to yield similar results, but that moisture can be a misleading tracer of the EIL. These results are consistent with studies using large-eddy simulations. We next utilize the POST data to shed light on and constrain processes relevant to entrainment, a key process in the evolution of the STBL that to-date is not well-represented even by high resolution models. We define "entrainment efficiency" as the ratio of the TKE consumed by entrainment to that generated within the STBL (primarily by cloud-top cooling). We find values for the entrainment efficiency that vary by 1.5 orders of magnitude, which is even greater than the one order magnitude that previous modeling results have suggested. Our analysis also demonstrates that the entrainment efficiency depends on the strength of the stratification of the EIL, but not on the TKE in the cloud top region. The relationships between entrainment efficiency and other STBL parameters serve as novel observational contraints for simulations of entrainment in such systems.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-17
    Description: Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR) C-130 near Christmas Island (2° N, 157° W) during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE). In order to tightly constrain the scalar budget of DMS, vertical eddy fluxes were measured at various levels in the marine boundary layer (MBL) from ~30 m to the top of the mixed layer (~500 m) providing improved accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well-known diurnal cycle, ranging from 50–95 pptv in the daytime to 90–110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for ~7.4 ppt hr −1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr−1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens.) The observed ocean flux of DMS averaged 3.1 (±1.5) μmol m−2 d−1, and generally decreased throughout the sunlit hours. Over the entire mission, the horizontal advection contribution to the overall budget was merely -0.1 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1.2 to 2.5 ppt hr−1 , indicating a patchy and variable surface seawater DMS distribution, and thus needs to be accounted for in budget studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...