ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-01
    Description: The reference conditions of historical tree density and pattern underpin ecological restoration and management of Pinus ponderosa Douglas ex Lawson & C.Lawson forests in western North America, yet the potential spatial variation in these variables across the landscape remains unclear. We reconstructed historical (1880) tree density and spatial pattern on 1 ha plots at 53 sites within a 110 000 ha P. ponderosa landscape in northern Arizona, compared these variables among US Forest Service ecosystem classification units, and modeled spatial variation with environmental variables. Mean tree density differed 19-fold among nine ecosystem types, and regression trees using four soil or climatic variables explained 62%–74% of the variation in density. Although density was more sensitive to environmental variation than was pattern, we did not find the clumped pattern widely described for P. ponderosa forests to be universal across ecosystems. Results suggest that (i) multivariate combinations of soil and climatic properties influenced historical forest structure, (ii) as much variation exists in reference conditions within the study landscape as between P. ponderosa regions, (iii) ecosystem classification is a useful framework for quantifying spatial variation in reference conditions, and (iv) determining spatial variation in reference conditions can assist resource managers in prioritizing areas for management and in developing ecosystem-specific management strategies within landscapes.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-16
    Description: Understanding the origins and roles of cardiac progenitor cells is important for elucidating the pathogenesis of congenital and acquired heart diseases. Moreover, manipulation of cardiac myocyte progenitors has potential for cell-based repair strategies for various myocardial disorders. Here we report the identification in mouse of a previously unknown cardiac myocyte lineage that derives from the proepicardial organ. These progenitor cells, which express the T-box transcription factor Tbx18, migrate onto the outer cardiac surface to form the epicardium, and then make a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Tbx18-expressing cardiac progenitors also give rise to cardiac fibroblasts and coronary smooth muscle cells. The pluripotency of Tbx18 proepicardial cells provides a theoretical framework for applying these progenitors to effect cardiac repair and regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, Chen-Leng -- Martin, Jody C -- Sun, Yunfu -- Cui, Li -- Wang, Lianchun -- Ouyang, Kunfu -- Yang, Lei -- Bu, Lei -- Liang, Xingqun -- Zhang, Xiaoxue -- Stallcup, William B -- Denton, Christopher P -- McCulloch, Andrew -- Chen, Ju -- Evans, Sylvia M -- P41 RR005351/RR/NCRR NIH HHS/ -- T32 HL007444/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Jul 3;454(7200):104-8. doi: 10.1038/nature06969. Epub 2008 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480752" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Lineage ; Gene Expression Regulation, Developmental ; Heart/growth & development ; Lac Operon/genetics ; Mice ; Myocardium/*cytology/metabolism ; Myocytes, Cardiac/*cytology/metabolism ; Myocytes, Smooth Muscle/metabolism ; Pericardium/*cytology/*metabolism ; Stem Cells/*cytology/metabolism ; T-Box Domain Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...