ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (3)
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 7841-7845 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Single-crystal TiN(111) layers, 45 nm thick, were grown on MgO(111) by ultrahigh vacuum reactive magnetron sputter deposition in pure N2 discharges at Ts=700 °C. Epitaxial Al(111) overlayers, 160 nm thick, were then deposited at Ts=100 °C in Ar without breaking vacuum. Interfacial reactions and changes in bilayer microstructure due to annealing at 620 and 650 °C were investigated using x-ray diffraction and transmission electron microscopy (TEM). The interfacial regions of samples annealed at 620 °C consist of continuous (similar, equals)7-nm-thick epitaxial wurtzite-structure AlN(0001) layers containing a high density of stacking faults, with (similar, equals)22 nm thick tetragonal Al3Ti(112) overlayers. Surprisingly, samples annealed at the higher temperature are more stable against Al3Ti formation. TEM analyses of bilayers annealed at 650 °C (10 °C below the Al melting point!) reveal only the self-limited growth of an (similar, equals)3-nm-thick interfacial layer of perfect smooth epitaxial wurtzite-structure AlN(0001) which serves as an extremely effective deterrent for preventing further interlayer reactions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 3633-3641 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Low-temperature deposition of TiN by reactive evaporation or sputter deposition onto amorphous substrates leads to highly underdense layers which develop mixed 111/002 orientations through competitive growth. In contrast, we demonstrate here the growth of low-temperature (450 °C) fully dense polycrystalline TiN layers with complete 111 texture. This was achieved by reactive magnetron sputter deposition using a combination of: (1) highly oriented 25-nm-thick 0002 Ti underlayers to provide 111 TiN orientation through texture inheritance (local epitaxy) and (2) high flux (JN2+/JTi=14), low-energy (EN2+(similar, equals)20 eV), N2+ ion irradiation in a magnetically unbalanced mode to provide enhanced adatom diffusion leading to densification during TiN deposition. The Ti underlayers were also grown in a magnetically unbalanced mode, in this case with an incident Ar+/Ti flux ratio of 2 and EAr+(similar, equals)11 eV. All TiN films were slightly overstoichiometric with a N/Ti ratio of 1.02±0.03. In order to assess the diffusion-barrier properties of dense 111-textured TiN, Al overlayers were deposited without breaking vacuum at 100 °C. Al/TiN bilayers were then annealed at a constant ramp rate of 3 °C s−1 to 650 °C s−1 and the interfacial reaction between Al and TiN was monitored by in situ synchrotron x-ray diffraction measurements. As a reference point, we find that interfacial Al3Ti formation is observed at 450 °C in Al/TiN bilayers in which the TiN layer is deposited directly on SiO2 in a conventional magnetically balanced mode and, hence, is underdense with a mixed 111/002 orientation. However, the onset temperature for interfacial reaction was increased to 610 °C in bilayers with fully dense TiN exhibiting complete 111 preferred orientation. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using metalorganic chemical vapor deposition assisted by a nitrogen radical irradiation generated by rf plasma, we have enhanced the quality and the step coverage of titanium nitride barrier metals for the contact holes with a high aspect ratio and a submicron radius. Electrical resistivity measurements show that the film resistivity improves by a factor of five as the proper nitrogen irradiation has been applied. The step coverage in a contact hole with 0.4 μm diam and 3:1 aspect ratio has been improved from 50% to 80% by applying nitrogen plasma, clearly demonstrating the effectiveness of this technique in the conformal deposition of barrier metals for the ultra-large scale integration. The incident nitrogen radical is believed to play several roles, such as the enhancement of surface migration rate of molecules and the reduction of the amount of hydrocarbon incorporating into the film during the deposition. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...