ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys〈sub〉2〈/sub〉-His〈sub〉2〈/sub〉 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4〈sup〉CRBN〈/sup〉 E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-09-14
    Description: Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haijuan -- Jeffrey, Philip D -- Miller, Julie -- Kinnucan, Elspeth -- Sun, Yutong -- Thoma, Nicolas H -- Zheng, Ning -- Chen, Phang-Lang -- Lee, Wen-Hwa -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1837-48.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA2 Protein/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/metabolism ; *DNA Repair ; DNA, Single-Stranded/*metabolism ; DNA-Binding Proteins/metabolism ; Genes, BRCA2 ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Mutation ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Rad51 Recombinase ; Rats ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-09-01
    Description: The atomic structures of two proteins in the histidine biosynthesis pathway consist of beta/alpha barrels with a twofold repeat pattern. It is likely that these proteins evolved by twofold gene duplication and gene fusion from a common half-barrel ancestor. These ancestral domains are not visible as independent domains in the extant proteins but can be inferred from a combination of sequence and structural analysis. The detection of subdomain structures may be useful in efforts to search genome sequences for functionally and structurally related proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, D -- Thoma, R -- Henn-Sax, M -- Sterner, R -- Wilmanns, M -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1546-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL) Hamburg Outstation, EMBL c/o Deutsches Elektronen- Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968789" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/*chemistry/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Aminohydrolases/*chemistry/genetics/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; *Evolution, Molecular ; *Gene Duplication ; Histidine/biosynthesis ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; *Protein Structure, Tertiary ; *Recombination, Genetic ; Sequence Alignment ; Thermotoga maritima/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-02-27
    Description: The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thoma-Uszynski, S -- Stenger, S -- Takeuchi, O -- Ochoa, M T -- Engele, M -- Sieling, P A -- Barnes, P F -- Rollinghoff, M -- Bolcskei, P L -- Wagner, M -- Akira, S -- Norgard, M V -- Belisle, J T -- Godowski, P J -- Bloom, B R -- Modlin, R L -- AI 07118/AI/NIAID NIH HHS/ -- AI 22553/AI/NIAID NIH HHS/ -- AI 47868/AI/NIAID NIH HHS/ -- AR 40312/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1544-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Dermatology, Department of Microbiology and Immunology and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11222859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/immunology ; Cell Line ; Cells, Cultured ; *Drosophila Proteins ; Humans ; Interferon-gamma/immunology/pharmacology ; Ligands ; Lipoproteins/*immunology ; Macrophage Activation ; Macrophages/immunology/metabolism/*microbiology ; Macrophages, Alveolar/immunology/metabolism/microbiology ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Membrane Glycoproteins/*metabolism ; Mice ; Monocytes/immunology/metabolism/*microbiology ; Mycobacterium tuberculosis/growth & development/*immunology ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/metabolism ; Nitric Oxide Synthase Type II ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; Toll-Like Receptor 2 ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/immunology/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-10-02
    Description: Cytolytic T lymphocytes (CTLs) kill intracellular pathogens by a granule-dependent mechanism. Granulysin, a protein found in granules of CTLs, reduced the viability of a broad spectrum of pathogenic bacteria, fungi, and parasites in vitro. Granulysin directly killed extracellular Mycobacterium tuberculosis, altering the membrane integrity of the bacillus, and, in combination with perforin, decreased the viability of intracellular M. tuberculosis. The ability of CTLs to kill intracellular M. tuberculosis was dependent on the presence of granulysin in cytotoxic granules, defining a mechanism by which T cells directly contribute to immunity against intracellular pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stenger, S -- Hanson, D A -- Teitelbaum, R -- Dewan, P -- Niazi, K R -- Froelich, C J -- Ganz, T -- Thoma-Uszynski, S -- Melian, A -- Bogdan, C -- Porcelli, S A -- Bloom, B R -- Krensky, A M -- Modlin, R L -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756476" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/analysis/*immunology/pharmacology ; Cell Line ; Cell Membrane/ultrastructure ; Cells, Cultured ; Cytoplasmic Granules/immunology ; *Cytotoxicity, Immunologic ; Humans ; Macrophages/immunology/microbiology ; Membrane Glycoproteins/immunology/pharmacology ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Mycobacterium tuberculosis/*immunology/physiology/ultrastructure ; Perforin ; Pore Forming Cytotoxic Proteins ; Recombinant Proteins/pharmacology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-09-05
    Description: Human Cdc25C is a dual-specificity protein phosphatase that controls entry into mitosis by dephosphorylating the protein kinase Cdc2. Throughout interphase, but not in mitosis, Cdc25C was phosphorylated on serine-216 and bound to members of the highly conserved and ubiquitously expressed family of 14-3-3 proteins. A mutation preventing phosphorylation of serine-216 abrogated 14-3-3 binding. Conditional overexpression of this mutant perturbed mitotic timing and allowed cells to escape the G2 checkpoint arrest induced by either unreplicated DNA or radiation-induced damage. Chk1, a fission yeast kinase involved in the DNA damage checkpoint response, phosphorylated Cdc25C in vitro on serine-216. These results indicate that serine-216 phosphorylation and 14-3-3 binding negatively regulate Cdc25C and identify Cdc25C as a potential target of checkpoint control in human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peng, C Y -- Graves, P R -- Thoma, R S -- Wu, Z -- Shaw, A S -- Piwnica-Worms, H -- AI34094/AI/NIAID NIH HHS/ -- GM18428/GM/NIGMS NIH HHS/ -- GM47017/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1501-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278512" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Cell Cycle Proteins/*metabolism ; DNA Damage ; DNA Replication ; *G2 Phase ; Gamma Rays ; HeLa Cells ; Humans ; Jurkat Cells ; *Mitosis ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/metabolism ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; S Phase ; *Tyrosine 3-Monooxygenase ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-02
    Description: The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys 2 -His 2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4 CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.
    Keywords: Medicine, Diseases, Molecular Biology, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-14
    Description: The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Sidney -- Thoma, Ines -- Deutsch, Amrei -- Gehrke, Tim -- Mayer, Peter -- Zipse, Hendrik -- Carell, Thomas -- New York, N.Y. -- Science. 2016 May 13;352(6287):833-6. doi: 10.1126/science.aad2808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig-Maximilians-Universitat Munchen, Department fur Chemie, D-81377 Munich, Germany. ; Ludwig-Maximilians-Universitat Munchen, Department fur Chemie, D-81377 Munich, Germany. thomas.carell@cup.uni-muenchen.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27174989" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...