ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (829)
  • ASTROPHYSICS  (589)
  • Life and Medical Sciences  (340)
  • 2000-2004  (829)
  • 1980-1984  (925)
  • 1920-1924  (4)
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 0197-8462
    Keywords: millimeter-wave radiation ; BHK-21/C13 cells in monolayer culture ; scanning electron microscopy ; transmission electron microscopy ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Both thermal and athermal effects of millimeter-wave radiation on BHK-21/C13 cells were sought using scanning and transmission electron microscopy in conjunction with an in vitro technique that allows direct exposure of monolayer cultures to high average power densities. Culture dishes were irradiated by placing them on the open end of an E- or U-band wave guide. This technique exposes different regions of the cell monolayer lying along the longer axis of the wave guide aperture to varying power densities ranging from zero at each edge to twice the average power density at the center.Cell ultrastructure was unaffected by microwave radiation for 1 hour (41.8 or 74.0 GHz, average power densitites = 320 or 450 mW/cm2, respectively) with or without cooling by rapid recirculation of the culture medium. Temperature in recirculated cultures was held at 37.2 °C, and that in noncooled cultures never exceeded 42 °C during irradiation at either power density. In contrast, cell morphology was affected by microwave exposure whenever irradiation conditions were altered so that the temperature of the monolayer reached or exceeded 44.5 °C. Ultrastructural alterations included breakage of cell processes, progressive detachment of cells from the substrate, increased clumping of heterochromatin in the nuclei, and the appearance of large empty vesicles in the cytoplasm. Such morphological changes resulted from either application of higher average power densities or irradiation at the power densities described above at a higher ambient temperature (〉38.5°C).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this study, the intracellular concentrations of six elements (mmole/kg dry weight) were directly measured in the muscle fibers of pectoralis major muscles of eight week old, genetically dystrophic and normal chickens by the X-ray microanalysis technique. The extent of muscle degeneration was evaluated by morphometric measurements of muscle fiber diameter and other histological changes. A significant increase in the concentration of intracellular sodium and chlorine was evident in dystrophic muscles. The concentration of intracellular sodium was 127.0 ± 35.0 in the muscle fibers of dystrophic chicks compared to 65.7 ± 16.5 in normal controls. The concentration of chlorine was 90.5 ± 27.5 and 54.1 ± 5.5 in the muscle fibers of dystrophic and normal chicks respectively. The intracellular concentrations of potassium, magnesium, phosphorous, and sulfur remained unchanged in the dystrophic condition. Morphometric studies revealed that the dystrophic pectoralis muscles contain fewer but thicker fibers per unit area compared to normal pectoralis muscles. The importance of these findings are discussed in relation to the results of earlier investigations.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5685; 837-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: The Magnetometer/Electron Reflectometer onboard Lunar Prospector has observed the solar wind interaction with remanent crustal magnetic fields at altitudes from 20 to 120 km. This interaction may be responsible for the formation of albedo swirls.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO2 is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few- or single-electron storage in a small number of nanocrystal elements. In addition, the nanocrystal layer fabrication technique should be simple, 8-inch wafer compatible and well controlled in program/erase threshold voltage swing was seen during 100,000 program and erase cycles. Additional near-term goals for this project include extensive testing for radiation hardness and the development of artificial layered tunnel barrier heterostructures which have the potential for large speed enhancements for read/write of nanocrystal memory elements, compared with conventional flash devices. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Innovative Approaches to Outer Planetary Exploration 2001-2020; 4; LPI-Contrib-1084
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: Understanding the Moon is crucial to future exploration of the solar system.The Moon preserves a record of the first billion years of the Earth-Moon system's history, including evidence of the Moon's origin as accumulated debris from a giant impact into early Earth. Lunar rocks provide evidence of early differentiation and extraction of a crust. Lacking an atmospheric shield, the Moon's regolith retains a record of the activity of solar wind over the past 4 billion years. It also holds a complete record of impact cratering, and analysis of samples has allowed calibration of ages, and thus dating of other planetary surfaces. And because of its proximity to Earth, it's low gravity well, and stable surface, the Moon's resources will be useful both in establishing lunar habitations and as fuel for exploration beyond the Moon. Lunar science has advanced tremendously in the 30 years since the Apollo and Luna missions. We know that the Moon is strongly differentiated, and recent tungsten isotope studies indicate that this differentiation occurred soon after solar system formation. The Moon probably accreted rapidly from debris that formed as a large planetesimal struck the early Earth. Ancient highland rocks provide evidence of early lunar differentiation, and basalts formed by later melting within the mantle reveal it cumulus nature. However, the timing, extent, and depth of differentiation, variations within the mantle, and lateral and vertical variations within the crust can only be surmised from the limited sample suites,gravity studies,and surface geophysics of the Apollo era. Data from the recent Lunar Prospector and Clementine missions permit reassessment of the global characteristics of the Moon and a reexamination of the distribution of elemental components, rock and soil types, and resources, as well as remanent magnetism, gravity field, and global topography New research provides some answers, but also leads to new questions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Eos, Transactions (ISSN 0096-3941); 81; 31; 349, 354-355
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 3 (1982), S. 247-253 
    ISSN: 0192-253X
    Keywords: H-Y antigen ; sex determination ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Karyotypically XY individuals of the C57BL/6J-YPOS mouse stock develop as females or hermaphrodites, but never as normal males. The aberrant sexual development results from the interaction of the C57BL/6J genetic background with the M. poschiavinus-derived Y chromosome. XY females from this stock were assayed for H-Y antigen. By the criteria of skin-grafting, the cell-mediated lympholysis test, and the popliteal lymph node assay, these XY females are antigenically indistinguishable from normal C57BL/6 males. Implications for the hypothesis that H-Y antigen induces formation of the mammalian testis are discussed.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0197-8462
    Keywords: millimeter-wave radiation ; BHK-21/C13 cells in monolayer culture ; quantitative autoradiography ; ribonucleic acid (RNA) synthesis ; protein synthesis ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: A method has been devised whereby both the thermal and possible athermal biological effects resulting from microwave radiation can be assessed. Monolayer cultures of BHK-21/C13 cells were grown on microwave-transparent polystyrene coverslips, placed directly on the open end of a wave guide, and irradiated for 1 hour. In experiments seeking athermal biological effects of millimeter waves, culture medium was continuously recirculated over the cells to prevent temperature increases greater than 0.1 °C. Incorporation of 3H-uridine into RNA and of 3H-methionine into protein was quantified by measurement of optical densities of the autoradiographs in contiguous rectangular regions corresponding to portions of the cell monolayer immediately above the wave guide aperture and lying along its longer axis. Since power density was shown to vary with position along this axis according to a cosine2 relationship, it was possible to assess the extent of microwave effects on macromolecular synthesis at power densities ranging from zero at each edge to twice the average power density at the center of the waveguide.Monolayer cultures maintained at 37.2 °C by recirculation of the medium did not show microwave-induced changes in synthesis of RNA and protein (41.8 or 74.0 GHz at average power densities of 320 or 450 mW/cm2, respectively). Since macromolecular synthesis was examined both during and after irradiation, our results exclude both transient and persistent athermal biological effects of acute exposure to millimeter waves. In contrast, irradiation of cultures incubated in a small volume of nonrecirculated medium resulted in 1) marked heating of the monolayer, 2) a graded decline in macromolecular synthesis with increasing incident power, and 3), in some cases, destruction of the cell monolayer in the region immediately above the center of the waveguide aperture.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0197-8462
    Keywords: protein synthesis ; quantitative autoradiography ; BHK-21/C13 cells ; millimeter-wave radiation ; frequency-specific biological effects ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: A method recently developed in this laboratory has been used to directly expose BHK-21/C13 cells to high levels of microwave radiation without significant microwave-induced heating (≤ 0.1 °C). Monolayer cultures were grown on microwave-transparent polystyrene coverslips, placed on the open end of a wave guide, and maintained at 37.2 °C during irradiation at frequencies in both the E- and U-bands (average power densities 292 and 177 mW/cm2, respectively). Effects of microwave radiation were assessed at 0.1 GHz increments in the ranges of 38-48 GHz and 65-75 GHz. Protein synthesis was measured in quadruplicate cultures that were allowed to incorporate labeled methionine during the 15-minute period of microwave irradiation. Autoradiographs of each monolayer culture were scanned along the region corresponding to the longer axis of the wave guide aperture using a microdensitometer to quantify incorporation. Since microwave power incident on the cells was previously shown to vary along this axis according to a cosine2 relationship from zero at each edge of the wave guide to twice the average power density at the center of the wave guide, this technique should reveal biological effects that might only be manifested in narrow amplitude domains or “power windows.” Observations of protein synthesis in monolayer cultures irradiated at 202 closely spaced frequencies in the E- and U-bands failed to reveal changes associated with microwave exposure. Thus no evidence was obtained in support of the existence of frequency-specific athermal biological effects of microwaves. In addition, no support was found for the existence of amplitude-specific “power windows”.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 112 (1982), S. 307-315 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The Ca2+ activation mechanism of the longitudinal body wall muscles of Parastichopus californicus (sea cucumber) was studied using skinned muscle fiber bundles. Reversible phosphorylation of the myosin light chains correlated with Ca2+-activated tension and relaxation. Pretreatment of the skinned fibers with ATPγS and high Ca2+ (10-5M) resulted in irreversible thiophosphorylation of the myosin light chains and activation of a Ca2+ insensitive tension. In contrast, pretreatment with low Ca2+ (10-8M) and ATPγS results in no thiophosphorylation of the myosin light chains or irreversible activation of tension. These results are consistent with a Ca2+-sensitive myosin light chain kinase/phosphatase system being responsible for the activation of the muscle. Other agents known to have an effect upon the Ca2+-activated tension in skinned vertebrate smooth muscle fibers (trifluoperazine, catalytic subunit of the cyclic AMP-dependent protein kinase, and calmodulin) did not have an effect on myosin light chain phosphorylation or Ca2+-activated tension. These results suggest a different type of myosin light chain kinase than is found in vertebrate smooth muscle is responsible for the activation of parastichopus longitudinal body wall muscle.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...