ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-08-30
    Description: Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation-to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of approximately 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein-protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Franz-Josef -- Laurent, Louise C -- Kostka, Dennis -- Ulitsky, Igor -- Williams, Roy -- Lu, Christina -- Park, In-Hyun -- Rao, Mahendra S -- Shamir, Ron -- Schwartz, Philip H -- Schmidt, Nils O -- Loring, Jeanne F -- K12 5K12HD000849-20/HD/NICHD NIH HHS/ -- P20 GM075059/GM/NIGMS NIH HHS/ -- P20 GM075059-01/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 18;455(7211):401-5. doi: 10.1038/nature07213. Epub 2008 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Regenerative Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. fj.mueller@zip-kiel.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18724358" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Artificial Intelligence ; Cell Differentiation ; Cell Line ; Computational Biology ; Databases, Factual ; Embryonic Stem Cells/classification/metabolism ; *Gene Expression Profiling ; Humans ; Mice ; Multipotent Stem Cells/classification/metabolism ; Oligonucleotide Array Sequence Analysis ; Oocytes/classification/metabolism ; Phenotype ; Pluripotent Stem Cells/classification/metabolism ; Protein Binding ; Stem Cells/*classification/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-11
    Description: Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herry, Cyril -- Ciocchi, Stephane -- Senn, Verena -- Demmou, Lynda -- Muller, Christian -- Luthi, Andreas -- England -- Nature. 2008 Jul 31;454(7204):600-6. doi: 10.1038/nature07166. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. cyril.herry@fmi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615015" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/physiology ; Animals ; Conditioning (Psychology) ; Extinction, Psychological ; Fear/*physiology ; Freezing Reaction, Cataleptic/drug effects/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Muscimol/pharmacology ; Neural Pathways ; Neurons/classification/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-02
    Description: A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moriniere, Jeanne -- Rousseaux, Sophie -- Steuerwald, Ulrich -- Soler-Lopez, Montserrat -- Curtet, Sandrine -- Vitte, Anne-Laure -- Govin, Jerome -- Gaucher, Jonathan -- Sadoul, Karin -- Hart, Darren J -- Krijgsveld, Jeroen -- Khochbin, Saadi -- Muller, Christoph W -- Petosa, Carlo -- England -- Nature. 2009 Oct 1;461(7264):664-8. doi: 10.1038/nature08397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP 181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794495" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Allosteric Regulation ; Animals ; Binding Sites ; COS Cells ; Cercopithecus aethiops ; Chromatin/chemistry/metabolism ; Crystallography, X-Ray ; Histones/*chemistry/*metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-03-04
    Description: The thymus organ supports the development of T cells and is located in the thorax. Here, we report the existence of a second thymus in the mouse neck, which develops after birth and grows to the size of a small lymph node. The cervical thymus had a typical medulla-cortex structure, was found to support T cell development, and could correct T cell deficiency in athymic nude mice upon transplantation. The identification of a regular second thymus in the mouse may provide evolutionary links to thymus organogenesis in other vertebrates and suggests a need to reconsider the effect of thoracic thymectomy on de novo T cell production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terszowski, Grzegorz -- Muller, Susanna M -- Bleul, Conrad C -- Blum, Carmen -- Schirmbeck, Reinhold -- Reimann, Jorg -- Pasquier, Louis Du -- Amagai, Takashi -- Boehm, Thomas -- Rodewald, Hans-Reimer -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):284-7. Epub 2006 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Ulm, D-89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Choristoma ; Forkhead Transcription Factors/genetics/physiology ; Hematopoietic Stem Cells/cytology ; Hepatitis B Antibodies/biosynthesis ; Hepatitis B Surface Antigens/immunology ; Histocompatibility Antigens Class II ; Immunocompetence ; Lymphopoiesis ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; *Neck ; Receptors, Antigen, T-Cell/analysis ; Self Tolerance ; T-Lymphocytes/*immunology ; Thymectomy ; Thymus Gland/anatomy & histology/growth & development/*immunology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-08-19
    Description: The "segmentation clock" is thought to coordinate sequential segmentation of the body axis in vertebrate embryos. This clock comprises a multicellular genetic network of synchronized oscillators, coupled by intercellular Delta-Notch signaling. How this synchrony is established and how its loss determines the position of segmentation defects in Delta and Notch mutants are unknown. We analyzed the clock's synchrony dynamics by varying strength and timing of Notch coupling in zebra-fish embryos with techniques for quantitative perturbation of gene function. We developed a physical theory based on coupled phase oscillators explaining the observed onset and rescue of segmentation defects, the clock's robustness against developmental noise, and a critical point beyond which synchrony decays. We conclude that synchrony among these genetic oscillators can be established by simultaneous initiation and self-organization and that the segmentation defect position is determined by the difference between coupling strength and noise.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riedel-Kruse, Ingmar H -- Muller, Claudia -- Oates, Andrew C -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1911-5. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany. ingmar@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702912" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*genetics/physiology ; *Body Patterning/genetics ; Dipeptides/pharmacology ; Embryo, Nonmammalian/metabolism ; *Embryonic Development ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Intracellular Signaling Peptides and Proteins ; Mathematics ; Membrane Proteins/genetics/metabolism ; Mesoderm/physiology ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Oligonucleotides, Antisense/pharmacology ; RNA Stability ; Receptor, Notch1/genetics/metabolism ; Signal Transduction ; Somites/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-01-16
    Description: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Hirt, Robert P -- Silva, Joana C -- Delcher, Arthur L -- Schatz, Michael -- Zhao, Qi -- Wortman, Jennifer R -- Bidwell, Shelby L -- Alsmark, U Cecilia M -- Besteiro, Sebastien -- Sicheritz-Ponten, Thomas -- Noel, Christophe J -- Dacks, Joel B -- Foster, Peter G -- Simillion, Cedric -- Van de Peer, Yves -- Miranda-Saavedra, Diego -- Barton, Geoffrey J -- Westrop, Gareth D -- Muller, Sylke -- Dessi, Daniele -- Fiori, Pier Luigi -- Ren, Qinghu -- Paulsen, Ian -- Zhang, Hanbang -- Bastida-Corcuera, Felix D -- Simoes-Barbosa, Augusto -- Brown, Mark T -- Hayes, Richard D -- Mukherjee, Mandira -- Okumura, Cheryl Y -- Schneider, Rachel -- Smith, Alias J -- Vanacova, Stepanka -- Villalvazo, Maria -- Haas, Brian J -- Pertea, Mihaela -- Feldblyum, Tamara V -- Utterback, Terry R -- Shu, Chung-Li -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Hrdy, Ivan -- Horvathova, Lenka -- Zubacova, Zuzana -- Dolezal, Pavel -- Malik, Shehre-Banoo -- Logsdon, John M Jr -- Henze, Katrin -- Gupta, Arti -- Wang, Ching C -- Dunne, Rebecca L -- Upcroft, Jacqueline A -- Upcroft, Peter -- White, Owen -- Salzberg, Steven L -- Tang, Petrus -- Chiu, Cheng-Hsun -- Lee, Ying-Shiung -- Embley, T Martin -- Coombs, Graham H -- Mottram, Jeremy C -- Tachezy, Jan -- Fraser-Liggett, Claire M -- Johnson, Patricia J -- 072031/Wellcome Trust/United Kingdom -- G0000508/Medical Research Council/United Kingdom -- G0000508(56841)/Medical Research Council/United Kingdom -- G9722968/Medical Research Council/United Kingdom -- G9722968(65078)/Medical Research Council/United Kingdom -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM007938/LM/NLM NIH HHS/ -- R01 LM007938-04/LM/NLM NIH HHS/ -- U01 AI050913/AI/NIAID NIH HHS/ -- U01 AI050913-01A1/AI/NIAID NIH HHS/ -- U01 AI050913-02/AI/NIAID NIH HHS/ -- UO1 AI50913-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):207-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Research Drive, Rockville, MD 20850, USA. jane.carlton@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; DNA Transposable Elements ; DNA, Protozoan/genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Humans ; Hydrogen/metabolism ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Multigene Family ; Organelles/metabolism ; Oxidative Stress/genetics ; Peptide Hydrolases/genetics/metabolism ; Protozoan Proteins/genetics/physiology ; RNA Processing, Post-Transcriptional ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sexually Transmitted Diseases/parasitology ; Trichomonas Infections/parasitology/transmission ; Trichomonas vaginalis/cytology/*genetics/metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-04-12
    Description: Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --〉 EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallarda, Benjamin W -- Bonanomi, Dario -- Muller, Daniel -- Brown, Arthur -- Alaynick, William A -- Andrews, Shane E -- Lemke, Greg -- Pfaff, Samuel L -- Marquardt, Till -- NS031249-14A1/NS/NINDS NIH HHS/ -- NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172/NS/NINDS NIH HHS/ -- R01 NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172-02/NS/NINDS NIH HHS/ -- R01 NS054172-03/NS/NINDS NIH HHS/ -- R01 NS054172-04/NS/NINDS NIH HHS/ -- R01 NS054172-05/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):233-6. doi: 10.1126/science.1153758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403711" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Axons/*physiology ; Cells, Cultured ; Coculture Techniques ; Efferent Pathways/physiology ; Electrophysiology ; Ephrins/*metabolism ; Ganglia, Spinal/cytology/physiology ; Growth Cones/physiology ; Ligands ; Mice ; Mice, Transgenic ; Motor Activity ; Motor Neurons/*physiology ; Muscle, Skeletal/innervation ; Mutation ; Neurons, Afferent/*physiology ; Peripheral Nerves/cytology/physiology ; Receptor, EphA3/genetics/*metabolism ; Receptor, EphA4/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-16
    Description: Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivens, Alasdair C -- Peacock, Christopher S -- Worthey, Elizabeth A -- Murphy, Lee -- Aggarwal, Gautam -- Berriman, Matthew -- Sisk, Ellen -- Rajandream, Marie-Adele -- Adlem, Ellen -- Aert, Rita -- Anupama, Atashi -- Apostolou, Zina -- Attipoe, Philip -- Bason, Nathalie -- Bauser, Christopher -- Beck, Alfred -- Beverley, Stephen M -- Bianchettin, Gabriella -- Borzym, Katja -- Bothe, Gordana -- Bruschi, Carlo V -- Collins, Matt -- Cadag, Eithon -- Ciarloni, Laura -- Clayton, Christine -- Coulson, Richard M R -- Cronin, Ann -- Cruz, Angela K -- Davies, Robert M -- De Gaudenzi, Javier -- Dobson, Deborah E -- Duesterhoeft, Andreas -- Fazelina, Gholam -- Fosker, Nigel -- Frasch, Alberto Carlos -- Fraser, Audrey -- Fuchs, Monika -- Gabel, Claudia -- Goble, Arlette -- Goffeau, Andre -- Harris, David -- Hertz-Fowler, Christiane -- Hilbert, Helmut -- Horn, David -- Huang, Yiting -- Klages, Sven -- Knights, Andrew -- Kube, Michael -- Larke, Natasha -- Litvin, Lyudmila -- Lord, Angela -- Louie, Tin -- Marra, Marco -- Masuy, David -- Matthews, Keith -- Michaeli, Shulamit -- Mottram, Jeremy C -- Muller-Auer, Silke -- Munden, Heather -- Nelson, Siri -- Norbertczak, Halina -- Oliver, Karen -- O'neil, Susan -- Pentony, Martin -- Pohl, Thomas M -- Price, Claire -- Purnelle, Benedicte -- Quail, Michael A -- Rabbinowitsch, Ester -- Reinhardt, Richard -- Rieger, Michael -- Rinta, Joel -- Robben, Johan -- Robertson, Laura -- Ruiz, Jeronimo C -- Rutter, Simon -- Saunders, David -- Schafer, Melanie -- Schein, Jacquie -- Schwartz, David C -- Seeger, Kathy -- Seyler, Amber -- Sharp, Sarah -- Shin, Heesun -- Sivam, Dhileep -- Squares, Rob -- Squares, Steve -- Tosato, Valentina -- Vogt, Christy -- Volckaert, Guido -- Wambutt, Rolf -- Warren, Tim -- Wedler, Holger -- Woodward, John -- Zhou, Shiguo -- Zimmermann, Wolfgang -- Smith, Deborah F -- Blackwell, Jenefer M -- Stuart, Kenneth D -- Barrell, Bart -- Myler, Peter J -- R01 AI040599/AI/NIAID NIH HHS/ -- R01 AI053667/AI/NIAID NIH HHS/ -- U01 AI040599/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):436-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. alicat@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/genetics/metabolism ; Gene Expression Regulation ; Genes, Protozoan ; Genes, rRNA ; *Genome, Protozoan ; Glycoconjugates/biosynthesis/metabolism ; Leishmania major/chemistry/*genetics/metabolism ; Leishmaniasis, Cutaneous/parasitology ; Lipid Metabolism ; Membrane Proteins/biosynthesis/chemistry/genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Protein Biosynthesis ; Protein Processing, Post-Translational ; Protozoan Proteins/biosynthesis/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA Splicing ; RNA, Protozoan/genetics/metabolism ; *Sequence Analysis, DNA ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-10-28
    Description: The spindle assembly checkpoint guards the fidelity of chromosome segregation. It requires the close cooperation of cell cycle regulatory proteins and cytoskeletal elements to sense spindle integrity. The role of the centrosome, the organizing center of the microtubule cytoskeleton, in the spindle checkpoint is unclear. We found that the molecular requirements for a functional spindle checkpoint included components of the large gamma-tubulin ring complex (gamma-TuRC). However, their localization at the centrosome and centrosome integrity were not essential for this function. Thus, the spindle checkpoint can be activated at the level of microtubule nucleation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Hannah -- Fogeron, Marie-Laure -- Lehmann, Verena -- Lehrach, Hans -- Lange, Bodo M H -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):654-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068266" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Cell Line ; Centrosome/physiology ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster ; Homeodomain Proteins/genetics/metabolism ; Humans ; Kinetochores/metabolism ; Microtubule-Associated Proteins/genetics/*metabolism ; Microtubules/ultrastructure ; *Mitosis ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; RNA Interference ; Spindle Apparatus/*metabolism/ultrastructure ; Tubulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-04-29
    Description: Homozygous deletion of the survival motor neuron 1 gene (SMN1) causes spinal muscular atrophy (SMA), the most frequent genetic cause of early childhood lethality. In rare instances, however, individuals are asymptomatic despite carrying the same SMN1 mutations as their affected siblings, thereby suggesting the influence of modifier genes. We discovered that unaffected SMN1-deleted females exhibit significantly higher expression of plastin 3 (PLS3) than their SMA-affected counterparts. We demonstrated that PLS3 is important for axonogenesis through increasing the F-actin level. Overexpression of PLS3 rescued the axon length and outgrowth defects associated with SMN down-regulation in motor neurons of SMA mouse embryos and in zebrafish. Our study suggests that defects in axonogenesis are the major cause of SMA, thereby opening new therapeutic options for SMA and similar neuromuscular diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oprea, Gabriela E -- Krober, Sandra -- McWhorter, Michelle L -- Rossoll, Wilfried -- Muller, Stefan -- Krawczak, Michael -- Bassell, Gary J -- Beattie, Christine E -- Wirth, Brunhilde -- HD055835/HD/NICHD NIH HHS/ -- R01 HD055835/HD/NICHD NIH HHS/ -- R01NS50414/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):524-7. doi: 10.1126/science.1155085.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18440926" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/blood/*genetics/*metabolism ; Animals ; Axons/metabolism/*physiology/ultrastructure ; Cell Differentiation ; Cell Line ; Cyclic AMP Response Element-Binding Protein/genetics/metabolism ; Female ; Gene Expression ; Growth Cones/metabolism/ultrastructure ; Humans ; Male ; Membrane Glycoproteins ; Mice ; Microfilament Proteins ; Muscular Atrophy, Spinal/*genetics ; Nerve Tissue Proteins/genetics/metabolism ; Pedigree ; Phosphoproteins/blood/*genetics/*metabolism ; RNA-Binding Proteins/genetics/metabolism ; SMN Complex Proteins ; Spinal Cord/metabolism ; Survival of Motor Neuron 1 Protein ; Transcription, Genetic ; Zebrafish/embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...