ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-07
    Description: In the visual system, the establishment of the anteroposterior and dorsoventral axes in the retina and tectum during development is important for topographic retinotectal projection. We identified chick Ventroptin, an antagonist of bone morphogenetic protein 4 (BMP-4), which is mainly expressed in the ventral retina, not only with a ventral high-dorsal low gradient but also with a nasal high-temporal low gradient at later stages. Misexpression of Ventroptin altered expression patterns of several topographic genes in the retina and projection of the retinal axons to the tectum along both axes. Thus, the topographic retinotectal projection appears to be specified by the double-gradient molecule Ventroptin along the two axes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakuta, H -- Suzuki, R -- Takahashi, H -- Kato, A -- Shintani, T -- Iemura Si -- Yamamoto, T S -- Ueno, N -- Noda, M -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji-cho, Okazaki 444-8585, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441185" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/*antagonists & inhibitors/genetics/metabolism ; Chick Embryo ; Cloning, Molecular ; Electroporation ; Embryo, Nonmammalian/cytology/metabolism ; Eye Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Gene Library ; Humans ; In Situ Hybridization ; Mice ; Microinjections ; Molecular Sequence Data ; *Morphogenesis ; Nerve Tissue Proteins ; Precipitin Tests ; Protein Binding ; Protein Isoforms/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Retina/*embryology/*metabolism ; Sequence Alignment ; Surface Plasmon Resonance ; Xenopus Proteins ; Xenopus laevis/embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-12
    Description: Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Tokiko -- Kiso, Maki -- Fukuyama, Satoshi -- Nakajima, Noriko -- Imai, Masaki -- Yamada, Shinya -- Murakami, Shin -- Yamayoshi, Seiya -- Iwatsuki-Horimoto, Kiyoko -- Sakoda, Yoshihiro -- Takashita, Emi -- McBride, Ryan -- Noda, Takeshi -- Hatta, Masato -- Imai, Hirotaka -- Zhao, Dongming -- Kishida, Noriko -- Shirakura, Masayuki -- de Vries, Robert P -- Shichinohe, Shintaro -- Okamatsu, Masatoshi -- Tamura, Tomokazu -- Tomita, Yuriko -- Fujimoto, Naomi -- Goto, Kazue -- Katsura, Hiroaki -- Kawakami, Eiryo -- Ishikawa, Izumi -- Watanabe, Shinji -- Ito, Mutsumi -- Sakai-Tagawa, Yuko -- Sugita, Yukihiko -- Uraki, Ryuta -- Yamaji, Reina -- Eisfeld, Amie J -- Zhong, Gongxun -- Fan, Shufang -- Ping, Jihui -- Maher, Eileen A -- Hanson, Anthony -- Uchida, Yuko -- Saito, Takehiko -- Ozawa, Makoto -- Neumann, Gabriele -- Kida, Hiroshi -- Odagiri, Takato -- Paulson, James C -- Hasegawa, Hideki -- Tashiro, Masato -- Kawaoka, Yoshihiro -- AI058113/AI/NIAID NIH HHS/ -- AI099274/AI/NIAID NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- T32 AI078985/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):551-5. doi: 10.1038/nature12392. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Cells, Cultured ; Chickens/virology ; DNA-Directed RNA Polymerases/antagonists & inhibitors ; Dogs ; Enzyme Inhibitors/pharmacology ; Female ; Ferrets/virology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology ; *Influenza A virus/chemistry/drug effects/isolation & purification/pathogenicity ; Influenza, Human/drug therapy/*virology ; Macaca fascicularis/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Monkey Diseases/pathology/virology ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae Infections/pathology/transmission/*virology ; Quail/virology ; Swine/virology ; Swine, Miniature/virology ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-05
    Description: Autophagy is a tightly regulated intracellular bulk degradation/recycling system that has fundamental roles in cellular homeostasis. Autophagy is initiated by isolation membranes, which form and elongate as they engulf portions of the cytoplasm and organelles. Eventually isolation membranes close to form double membrane-bound autophagosomes and fuse with lysosomes to degrade their contents. The physiological role of autophagy has been determined since its discovery, but the origin of autophagosomal membranes has remained unclear. At present, there is much controversy about the organelle from which the membranes originate--the endoplasmic reticulum (ER), mitochondria and plasma membrane. Here we show that autophagosomes form at the ER-mitochondria contact site in mammalian cells. Imaging data reveal that the pre-autophagosome/autophagosome marker ATG14 (also known as ATG14L) relocalizes to the ER-mitochondria contact site after starvation, and the autophagosome-formation marker ATG5 also localizes at the site until formation is complete. Subcellular fractionation showed that ATG14 co-fractionates in the mitochondria-associated ER membrane fraction under starvation conditions. Disruption of the ER-mitochondria contact site prevents the formation of ATG14 puncta. The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER-mitochondria contact site. These results provide new insight into organelle biogenesis by demonstrating that the ER-mitochondria contact site is important in autophagosome formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamasaki, Maho -- Furuta, Nobumichi -- Matsuda, Atsushi -- Nezu, Akiko -- Yamamoto, Akitsugu -- Fujita, Naonobu -- Oomori, Hiroko -- Noda, Takeshi -- Haraguchi, Tokuko -- Hiraoka, Yasushi -- Amano, Atsuo -- Yoshimori, Tamotsu -- England -- Nature. 2013 Mar 21;495(7441):389-93. doi: 10.1038/nature11910. Epub 2013 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23455425" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; *Autophagy ; COS Cells ; Cercopithecus aethiops ; Endoplasmic Reticulum/*metabolism/ultrastructure ; Gene Knockdown Techniques ; HEK293 Cells ; HeLa Cells ; Humans ; Intracellular Membranes/*metabolism ; Mitochondria/*metabolism/ultrastructure ; Phagosomes/*metabolism/ultrastructure ; Protein Transport ; Qa-SNARE Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-21
    Description: Spatial asymmetries in neural connectivity have an important role in creating basic building blocks of neuronal processing. A key circuit module of directionally selective (DS) retinal ganglion cells is a spatially asymmetric inhibitory input from starburst amacrine cells. It is not known how and when this circuit asymmetry is established during development. Here we photostimulate mouse starburst cells targeted with channelrhodopsin-2 (refs 6-8) while recording from a single genetically labelled type of DS cell. We follow the spatial distribution of synaptic strengths between starburst and DS cells during early postnatal development before these neurons can respond to a physiological light stimulus, and confirm connectivity by monosynaptically restricted trans-synaptic rabies viral tracing. We show that asymmetry develops rapidly over a 2-day period through an intermediate state in which random or symmetric synaptic connections have been established. The development of asymmetry involves the spatially selective reorganization of inhibitory synaptic inputs. Intriguingly, the spatial distribution of excitatory synaptic inputs from starburst cells is significantly more symmetric than that of the inhibitory inputs at the end of this developmental period. Our work demonstrates a rapid developmental switch from a symmetric to asymmetric input distribution for inhibition in the neural circuit of a principal cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yonehara, Keisuke -- Balint, Kamill -- Noda, Masaharu -- Nagel, Georg -- Bamberg, Ernst -- Roska, Botond -- England -- Nature. 2011 Jan 20;469(7330):407-10. doi: 10.1038/nature09711. Epub 2010 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21170022" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Amacrine Cells/metabolism/physiology/radiation effects ; Animals ; Female ; Light ; Male ; Mice ; *Models, Neurological ; *Motion ; Motion Perception/*physiology ; Neural Inhibition/*physiology ; Neural Pathways/*physiology ; Neuroanatomical Tract-Tracing Techniques ; Photic Stimulation ; Rabies virus/genetics/isolation & purification/physiology ; Retina/cytology/growth & development/*physiology ; Retinal Ganglion Cells/physiology ; Rhodopsin/genetics/metabolism ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...