ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
  • 1
    Publication Date: 2023-05-24
    Description: The newly developed fast Earth system model CLIMBER-X is presented. The climate component of CLIMBER-X consists of a 2.5D semi-empirical statistical-dynamical atmosphere model, a 3D frictional-geostrophic ocean model, a dynamic-thermodynamic sea ice model and a land surface model. All model components are discretized on a regular lat-lon grid with a horizontal resolution of 5° × 5°. The model has a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to 〉 100,000 years. A comprehensive evaluation of the model performance for present day and the historical period shows that CLIMBER-X is capable of realistically reproducing many observed climate characteristics, with results that generally lie within the range of state-of-the-art general circulation models. The analysis of model performance is complemented by a thorough assessment of climate feedbacks and model sensitivities to changes in external forcings and boundary conditions. CLIMBER-X also includes a detailed representation of the global carbon cycle and is coupled to an ice sheet model, which will be described in separate papers. CLIMBER-X is available as open--source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-14
    Description: Understanding the future fate of the Greenland Ice Sheet (GIS) in the context of anthropogenic CO2 emissions is crucial to predict sea level rise. With the fully coupled Earth system model of intermediate complexity CLIMBER-X, we study the stability of the GIS and its transient response to CO2 emissions over the next 10 kyr. Bifurcation points exist at global temperature anomalies of 0.6 and 1.6 K relative to pre-industrial. For system states in the vicinity of the equilibrium ice volumes corresponding to these temperature anomalies, mass loss rate and sensitivity of mass loss to cumulative CO2 emission peak. These critical ice volumes are crossed for cumulative emissions of 1000 and 2500 GtC, which would cause long-term sea level rise by 1.8 and 6.9 m respectively. In summary, we find tipping of the GIS within the range of the temperature limits of the Paris agreement.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-27
    Description: The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate–ecological–social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-27
    Description: It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo. However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300–400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-23
    Description: The carbon cycle component of the newly developed Earth System Model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediments processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented into the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for present–day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4, but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art CMIP6 models. Enabling interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ~20 %, compared to a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer in a climate–only model setup. CLIMBER-X is therefore well suited to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to 〉100,000 years.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-05
    Description: During the Quaternary, the Hudson Bay switched between closed (covered by ice sheet) and open (ice sheet-free) conditions due to large variations of ice sheets. However, how the closure and opening of the Hudson Bay have affected the local and global climates is still poorly understood. Using the LOVECLIM1.3 model, here we investigate the effect of the Hudson Bay closure under glacial conditions with different astronomical configurations, greenhouse gases (GHG) concentrations and Northern Hemisphere (NH) ice volume. Our model results show that the closure of the Hudson Bay could lead to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC), which in turn leads to a warming in the NH with notable warming in the Labrador Sea and northeast North Atlantic, a cooling in the Southern Hemisphere (SH) and a northward shift of the Inter-tropical Convergence Zone (ITCZ). In addition to the large-scale climate changes, the closure of Hudson Bay also leads to a strong cooling over the Hudson Bay region due to changes of surface properties and a cooling to the southeast of Greenland due to more wind-driven sea ice export from the Arctic. However, the effect of the Hudson Bay closure depends on background climate conditions, and it could weaken or slightly reinforce the effect of the ice sheets for different astronomical configurations.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-07
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-17
    Description: Driven primarily by variations in the earth's axis wobble, tilt, and orbit eccentricity, our planet experienced massive glacial/interglacial reorganizations of climate and atmospheric CO2 concentrations during the Pleistocene (2.58 million years ago (Ma)–11.7 thousand years ago (ka)). Even after decades of research, the underlying climate response mechanisms to these astronomical forcings have not been fully understood. To further quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model version 1.2 (CESM1.2, ∼3.75∘ horizontal resolution), which covers the climatic history of the past 3 million years (3 Myr). In addition to the astronomical insolation changes, CESM1.2 is forced by estimates of CO2 and ice-sheet topography which were obtained from a simulation previously conducted with the CLIMBER-2 earth system model of intermediate complexity. Our 3 Ma simulation consists of 42 transient interglacial/glacial simulation chunks, which were partly run in parallel to save computing time. The chunks were subsequently merged, accounting for spin-up and overlap effects to yield a quasi-continuous trajectory. The computer model data were compared against a plethora of paleo-proxy data and large-scale climate reconstructions. For the period from the Mid-Pleistocene Transition (MPT, ∼1 Ma) to the late Pleistocene we find good agreement between simulated and reconstructed temperatures in terms of phase and amplitude (−5.7 ∘C temperature difference between Last Glacial Maximum and Holocene). For the earlier part (3–1 Ma), differences in orbital-scale variability occur between model simulation and the reconstructions, indicating potential biases in the applied CO2 forcing. Our model-proxy data comparison also extends to the westerlies, which show unexpectedly large variance on precessional timescales, and hydroclimate variables in major monsoon regions. Eccentricity-modulated precessional variability is also responsible for the simulated changes in the amplitude and flavors of the El Niño–Southern Oscillation. We further identify two major modes of planetary energy transport, which played a crucial role in Pleistocene climate variability: the first obliquity and CO2-driven mode is linked to changes in the Equator-to-pole temperature gradient; the second mode regulates the interhemispheric heat imbalance in unison with the eccentricity-modulated precession cycle. During the MPT, a pronounced qualitative shift occurs in the second mode of planetary energy transport: the post-MPT eccentricity-paced variability synchronizes with the CO2 forced signal. This synchronized feature is coherent with changes in global atmospheric and ocean circulations, which might contribute to an intensification of glacial cycle feedbacks and amplitudes. Comparison of this paleo-simulation with greenhouse warming simulations reveals that for an RCP8.5 greenhouse gas emission scenario, the projected global mean surface temperature changes over the next 7 decades would be comparable to the late Pleistocene glacial-interglacial range; but the anthropogenic warming rate will exceed any previous ones by a factor of ∼100.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Climate of the Past
    Publication Date: 2024-01-25
    Description: In recent decades, numerous paleoclimate records and results of model simulations provided strong support to the astronomical theory of Quaternary glacial cycles formulated in its modern form by Milutin Milankovitch. At the same time, new findings revealed that the classical Milankovitch theory is unable to explain a number of important facts, such as the change of the dominant periodicity of glacial cycles from 41 kyr to 100 kyr about one million years ago. This transition was also accompanied by an increase in the amplitude and asymmetry of the glacial cycles. Here, based on the results of a hierarchy of models and data analysis, a framework of the extended (generalized) version of the Milankovitch theory is presented. To illustrate the main elements of this theory, a simple conceptual model of glacial cycles was developed using the results of an Earth system model CLIMBER-2. This conceptual model explicitly assumes the multistability of the climate-cryosphere system and the instability of the “supercritical” ice sheets. Using this model, it is shown that Quaternary glacial cycles can be successfully reproduced as the strongly-nonlinear response of the Earth system to the orbital forcing, where 100 kyr cyclicity originates from the phase-locking of the precession and obliquity-forced glacial cycles to the corresponding eccentricity cycle. The eccentricity influences glacial cycles solely through its amplitude modulation of the precession component of orbital forcing, while the long time scale of the late Quaternary glacial cycles is determined by the time required for ice sheets to reach their critical size. The postulates used to construct this conceptual model were justified using analysis of relevant physical and biogeochemical processes and feedbacks. In particular, the role of climate-ice sheet-carbon cycle feedback in shaping and globalization of glacial cycles is discussed. The reasons for the instability of the large northern ice sheets and the mechanisms of the Earth system escape from the “glacial trap” via a set of strongly nonlinear processes are presented. It is also shown that the transition from the 41 kyr to the 100 kyr world about one million years ago can be explained by a gradual increase in the critical size of ice sheets, which in turn is related to the gradual removal of terrestrial sediments from the northern continents. The implications of this nonlinear paradigm for understanding Quaternary climate dynamics and the remaining knowledge gaps are finally discussed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate–ecological–social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...