ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (132)
  • 2020-2023  (125)
  • 1945-1949  (7)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-10-13
    Description: Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
    Description: Key Points: The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world. Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean. Virtually all socio‐economic sectors will be critically affected by the projected changes.
    Description: European Union Horizon 2020
    Description: https://esg-dn1.nsc.liu.se/search/esgf-liu/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-31
    Description: Radial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the data set used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Brautigam et al. (2005), https://doi.org/10.1029/2004ja010612, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, Ali et al. (2015), https://doi.org/10.1002/2014ja020419; Ali et al. (2016), https://doi.org/10.1002/2016ja023002; Ali (2016), and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 on long‐term radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code, and compare the results to Van Allen Probes observations. First, 1‐D radial diffusion simulations are performed, isolating the contribution of solely radial diffusion. We then take into account effects of local acceleration and loss showing additional 3‐D simulations, including diffusion across pitch‐angle, energy, and mixed diffusion. For the L* range studied, the difference between simulations with Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 parameterizations is shown to be small, with Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344 offering the smallest averaged (across multiple energies) absolute normalized difference with observations. Using the Ali et al. (2016), https://doi.org/10.1002/2016ja023002 parameterization tended to result in a lower flux than both the observations and the VERB simulations using the other coefficients. We find that the 3‐D simulations are less sensitive to the radial diffusion coefficient chosen than the 1‐D simulations, suggesting that for 3‐D radiation belt models, a similar result is likely to be achieved, regardless of whether Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 parameterizations are used.
    Description: Key Points: 3‐D simulations using different radial diffusion coefficients, except Ali et al. (2016), produce similar results. Using Ali et al. (2016) DLL, simulated flux is significantly lower than observations. 3‐D modeling with Brautigam and Albert (2000) DLL results in a slightly smaller normalized difference (averaged over energies) to observations.
    Description: National Aeronautics and Space Administration (NASA) http://dx.doi.org/10.13039/100000104
    Description: European Union's Horizon 2020
    Description: https://doi.org/10.25346/S6/U9WFPD
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-29
    Description: Space radiation is one of the main concerns in planning long‐term human space missions. There are two main types of hazardous radiation: solar energetic particles (SEP) and galactic cosmic rays (GCR). The intensity and evolution of both depends on solar activity. GCR activity is most enhanced during solar minimum and lowest during solar maximum. The reduction of GCRs is alagging behind solar activity only by 6–12 month. SEP probability and intensity are maximized during solar maximum and are minimized during solar minimum. In this study, we combine models of the particle environment arising due to SEP and GCR with Monte Carlo simulations of radiation propagation inside a spacecraft and phantom. We include 28 fully ionized GCR elements from hydrogen to nickel and consider protons and nine ion species to model the SEP irradiation. Our calculations demonstrate that the optimal time for a flight to Mars would be launching the mission at solar maximum, and that the flight duration should not exceed approximately 4 years.
    Description: Plain Language Summary: Space particle radiation is one of the main concerns in planning long‐term human space missions. There are two main types of hazardous particle radiation: (a) solar energetic particles (SEP) originating from the Sun and (b) galactic cosmic rays (GCR) that come from the distant galaxies in space. Fluxes in particles of solar origin maximize during solar maximum when particles originating from the distant galaxies are more efficiently deflected from the solar system during times when the sun is active. Our calculations clearly demonstrate that the best time for launching a human space flight to Mars is during the solar maximum, as it is possible to shield from SEP particles. Our simulations show that an increase in shielding creates an increase in secondary radiation produced by the most energetic GCR, which results in a higher dose, introducing a limit to a mission duration. We estimate that a potential mission to Mars should not exceed approximately 4 years. This study shows that while space radiation imposes strict limitations and presents technological difficulties for the human mission to Mars, such a mission is still viable.
    Description: Key Points: Space missions to Mars should be scheduled to be launched during solar max. Optimal spacecraft shielding is ~30 g/cm2, which allows long‐duration flights of ~4 years. Increase of shielding thickness beyond ~30 g/cm2 results in dose increase.
    Keywords: ddc:629.416
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-02
    Description: The real-time monitoring of reductions of economic activity by containment measures and its effect on the transmission of the coronavirus (COVID-19) is a critical unanswered question. We inferred 5,642 weekly activity anomalies from the meteorology-adjusted differences in spaceborne tropospheric NO2 column concentrations after the 2020 COVID-19 outbreak relative to the baseline from 2016 to 2019. Two satellite observations reveal reincreasing economic activity associated with lifting control measures that comes together with accelerating COVID-19 cases before the winter of 2020/2021. Application of the near-real-time satellite NO2 observations produces a much better prediction of the deceleration of COVID-19 cases than applying the Oxford Government Response Tracker, the Public Health and Social Measures, or human mobility data as alternative predictors. A convergent cross-mapping suggests that economic activity reduction inferred from NO2 is a driver of case deceleration in most of the territories. This effect, however, is not linear, while further activity reductions were associated with weaker deceleration. Over the winter of 2020/2021, nearly 1 million daily COVID-19 cases could have been avoided by optimizing the timing and strength of activity reduction relative to a scenario based on the real distribution. Our study shows how satellite observations can provide surrogate data for activity reduction during the COVID-19 pandemic and monitor the effectiveness of containment to the pandemic before vaccines become widely available.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-28
    Description: The wind shear theory is widely accepted as an explanation for the formation of a sporadic E (Es) layer, but the direct comparison of Es with the local wind shear has been limited due to the lack of neutral wind measurements. This study examines the role of the vertical wind shear for Es, using signal‐to‐noise ratio profiles from COSMIC‐2 radio occultation measurements and concurrent measurements of neutral wind profiles from the Ionospheric Connection Explorer. It is observed that the Es occurrence rate and average S4 index are correlated with the negative vertical shear of the eastward wind, providing observational support for the wind shear theory. Es can be observed even when the vertical wind shear is positive, which is interpreted as metallic ion layers generated at an earlier time.
    Description: Plain Language Summary: Sporadic E (Es) is anomalous radio propagation resulting from intense clouds of ionization at heights of the E‐region ionosphere (90–120 km). The formation of an Es layer is generally attributed to the vertical wind shear, which can move metallic ions in the vertical direction by the Lorentz force. According to the wind shear theory, a negative shear of the eastward wind is effective in converging the metallic ions into a thin layer to produce Es. Although previous observations and modeling studies have supported the theory to various degrees, the direct comparison of Es with the vertical wind shear has been limited due to sparse observations of neutral winds at E‐region heights. Neutral wind profiles from the Ionospheric Connection Explorer mission, together with Es data from COSMIC‐2 radio occultation measurements, provide an opportunity to fill this knowledge gap. Direct comparisons of these measurements reveal that the Es occurrence rate is higher and lower for larger negative and positive wind shears, respectively, providing observational evidence for the wind shear theory.
    Description: Key Points: Conjunction observations of sporadic E (Es) from COSMIC‐2 and neutral wind profiles from Ionospheric Connection Explorer/Michelson Interferometer for Global High‐Resolution Thermospheric Imaging are analyzed. Es occurrence rate correlates with the negative vertical shear of eastward wind, providing observational evidence for the wind shear theory. Es can be observed even when the vertical shear of the local eastward wind is positive.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: DFG Priority Program Dynamic Earth
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-10
    Description: Deception Island is one of the most active and best‐documented volcanoes in Antarctica. Since its last eruption in 1970, several geophysical surveys have targeted reconstructing its magmatic systems. However, geophysics fails to reconstruct the pathways magma and fluids follow from depth to erupt at the surface. Here, novel data selection strategies and multi‐frequency absorption inversions have been framed in a Geographical Information System, using all available geological (vents and faults distribution), geochemical and geophysical knowledge of the volcano. The result is the detection of these eruptive pathways. The model offers the first image of the magma and associated fluids pathways feed the 1967, 1969, and 1970 eruptions. Results suggest that future ascending paths might lead to active research bases and zones of planned helicopter rescue. The connection between seismic absorption, temperature, and fluid content makes it a promising attribute for detecting and monitoring eruptions at active calderas.
    Description: Plain Language Summary: Deception Island is the gateway for tourists to Antarctica and a laboratory to understand ice‐capped volcanoes and their eruptions. While the Island has been the target of many geophysical studies, no clear tomographic model shows how deep eruptive pathways of its last eruptions have reached the surface in the 1960s and 1970s. This is a recurrent topic in volcano geophysics: dikes and fluid migrations develop across structures considered too small to be detected by tomographic techniques. This paper demonstrates that seismic absorption has sufficient sensitivity to temperature and fluid content to detect these pathways. Once integrated within a Geographical Information System with all the information we have on the volcano, the models resolve the feeding systems of these eruptions, from a tectonically deformed deep magma chamber to shallow cold dyke intrusions and fluid migrations still feeding the volcano today. The correlation between seismic absorption, temperature, and fluid content offers a new tool for detecting and monitoring shallow volcanic hazards.
    Description: Key Points: High absorption detects deep eruptive pathways from the caldera center to its rim. Absorption imaging reconstructs shallow pathways of hazardous materials. Seismic absorption is sensitive to thermal anomalies at depth.
    Description: https://doi.org/10.5281/zenodo.6561124
    Description: https://zenodo.org/badge/latestdoi/493744216
    Keywords: ddc:551 ; seismic absorption ; seismic tomography ; Deception Island ; Volcanology ; remote sensing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-28
    Description: We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior of nonideal solution models on reactive transport processes in open systems. The equations of the state of internally consistent thermodynamic data sets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multicomponent phases to study the impact of the nonideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data, phase diagrams, and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the nonlinearity of the partitioning of a component in fluid and solid. We argue that nonideality of solution models has to be taken into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn‐Hilliard models for nonlinear diffusion and phase growth. This presents a transient process toward equilibrium and avoids computational problems arising during precomputing of equilibrium data.
    Description: Plain Language Summary: The behavior of Earth materials, rocks, minerals, melts, fluids, and gases is important to predict physical processes in the Earth with computer models. The purpose of this is to study how the changes of variables such as fluid and solid composition influence the diffusion, fluid flow, and reaction in rocks. Here, we present a set of computer codes, called Thermolab, to calculate important physical properties such as density and chemical composition of solids, fluids, and melts in chemical equilibrium. The calculations are based on the Gibbs energy that exists for every material. We use computer codes, written in MATLAB/OCTAVE language, to show how this Gibbs energy is calculated and used to compute chemical equilibrium and find the physical properties such as density and chemical composition. We discuss techniques for accurate calculation of chemical equilibrium and physical properties in real rocks. Finally, we use Thermolab to formulate a computer model of fluids reacting with rocks. We find that chemical composition of the fluid and rock strongly affects the speed and shape of the boundary between reacted and unreacted rock. Thermolab can be used in phase growth models to investigate the way in which rocks develop toward equilibrium.
    Description: Key Points: Thermolab: a set of MATLAB codes is presented to perform equilibrium and nonequilibrium thermodynamic calculations. Local thermodynamic equilibrium is used to study effects of nonideality of solution models on nonlinear transport processes. Nonlinear diffusion processes are investigated with Thermolab providing a transient natural physical process toward equilibrium.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Russian Ministry of Science and Higher Education
    Description: https://hansjcv.github.io/Thermolab/
    Description: https://doi.org/10.5281/zenodo.6383253
    Keywords: ddc:551.9 ; ddc:541.36
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-05
    Description: The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired.
    Description: Plain Language Summary: When satellites take images of Earth, they usually do so from directly above (or as close to it as is reasonably possible). In this comment, we show that for studies that use imagery of Earth at night, it may be beneficial to take several images of the same area at different angles within a short period of time. For example, different types of lights shine in different directions (street lights usually shine down, while video advertisements shine sideways), and tall buildings can block the view of a street from some viewing angles. Additionally, since views from different directions pass through different amounts of air, imagery at multiple angles could be used to obtain information about Earth's atmosphere, and measure artificial and natural night sky brightness. The main point of the paper is to encourage researchers, funding agencies, and space agencies to think about what new possibilities could be achieved in the future with views of night lights at different angles.
    Description: Key Points: Remote sensing using the visible band at night is more complex than during the daytime, especially due to the variety of artificial lights. Views of night lights intentionally taken from multiple angles provide several advantages over near‐nadir or circumstantial view geometries. Night lights remote sensing would benefit from greater consideration of the role viewing geometry plays in the observed radiance.
    Description: EC H2020 H2020 Societal Challenges http://dx.doi.org/10.13039/100010676
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Slovak Research and Development Agency
    Description: Xunta de Galicia (Regional Government of Galicia) http://dx.doi.org/10.13039/501100010801
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: University of Hong Kong http://dx.doi.org/10.13039/501100003803
    Description: Fonds de recherche du Québec
    Description: EC Emprego, Assuntos Sociais e Inclusão European Social Fund http://dx.doi.org/10.13039/501100004895
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: City of Cologne, Germany
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-09-22
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high‐resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure‐shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple‐shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick‐skinned, fully thin‐skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure‐shear shortening mode whereas the others require a simple‐shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin‐skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one‐third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Description: Key Points: Thicknesses of the orogenic crust and the foreland lithosphere control the foreland shortening mode (pure‐shear or simple‐shear). Foreland weak sediments and the upper lithosphere of the weaker orogen control the foreland tectonic style (thin‐skinned or thick‐skinned). High‐resolution geodynamic models successfully reproduce foreland deformation patterns in several natural orogen‐foreland shortening systems.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://bitbucket.org/bkaus/LaMEM
    Description: https://doi.org/10.5281/zenodo.5963016
    Keywords: ddc:551.8
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-21
    Description: Importance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...