ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-01
    Print ISSN: 0034-4257
    Electronic ISSN: 1879-0704
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-10
    Description: Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP (Water – Global Assessment and Prognosis) 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure/refinements, consideration of human water use and calibration (or no calibration) against observed mean river discharge. In a modeling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. The basin-specific calibration approach for WaterGAP was found to have the largest effect on grid cell fluxes as well as on global AET (actual evapotranspiration) and discharge into oceans for the period 1971–2000. Regarding grid cell fluxes, climate forcing ranks second before land cover input. Global water storage trends are most sensitive to model refinements (mainly modeling of groundwater depletion) and consideration of human water use. The best fit to observed time series of monthly river discharge or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by daily reanalysis-based WFD/WFDEI (combination of Watch Forcing Data based on ERA40 and Watch Forcing Data based on ERA-Interim) climate data. Discharge computed by a calibrated model version using monthly CRU TS (Climate Research Unit time-series) 3.2 and GPCC (Global Precipitation Climatology Center) v6 climate input reduced the fit to observed discharge for most stations. Taking into account uncertainties of climate and land cover data, global 1971–2000 discharge into oceans and inland sinks ranges between 40 000 and 42 000 km3 yr−1. Global actual evapotranspiration, with 70 000 km3 yr−1, is rather unaffected by climate and land cover uncertainties. Human water use reduced river discharge by 1000 km3 yr−1, such that global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to shortwave radiation data, resulting in strongly different actual evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to present.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-07
    Description: Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure, consideration of human water use and calibration (or no calibration). In a modelling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. Sensitivity was analyzed by comparing water fluxes and water storage variations computed by the variants to those of the standard version, considering both global averages and grid cell values for the time period 1971–2000. The basin-specific calibration approach for WaterGAP, which forces simulated mean annual river discharge to be equal to observed values at 1319 gauging stations (representing 54% of global land area except Antarctica and Greenland), has the highest effect on modelled water fluxes and leads to the best fit of modelled to observed monthly and seasonal river discharge. Alternative state-of-the-art climate forcings rank second regarding the impact on grid cell specific fluxes and water storage variations, and their impact is ubiquitous and stronger than that of alternative land cover inputs. The diverse model refinements during the last decade lead to an improved fit to observed discharge, and affect globally averaged fluxes and storage values (the latter mainly due to modelling of groundwater depletion) but only affect a relatively small number of grid cells. Considering human water use is important for the global water storage trend (in particular in the groundwater compartment) but impacts on water fluxes are rather local and only important where water use is high. The best fit to observed time series of monthly river discharge (Nash–Sutcliffe criterion) or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by a sequence of two time series of daily observation-based climate forcings, WFD/WFDEI. Discharge computed by a calibrated model version using monthly CRU 3.2 and GPCC v6 climate input reduced the fit to observed discharge for most stations. Taking into account the investigated uncertainties of climate and land cover data, we estimate that the global 1971–2000 discharge into oceans and inland sinks is between 40 000 and 42 000 km3 yr−1. The range is mainly due differences in precipitation data that affect discharge in uncalibrated river basins. Actual evapotranspiration, with approximately 70 000 km3 yr−1, is rather unaffected by climate and land cover in global sum but differs spatially. Human water use is calculated to reduce river discharge by approximately 1000 km3 yr−1. Thus, global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to short wave radiation data, resulting in strongly different potential evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to current.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-25
    Description: Seasonal water storage fluctuations are critical for evaluating water scarcity linked to climate forcing and human intervention. Here we compare seasonal changes in land total water storage anomalies using seven global hydrologic and land surface models (WGHM, PCR-GLOBWB, and five GLDAS models) to GRACE satellite data in 183 river basins globally. This work builds on previous analysis that focused on total water storage anomaly trends. Results show that most models underestimate seasonal water storage amplitudes in tropical and (semi)arid basins and land surface models generally overestimate amplitudes in northern basins. Some models (CLM-5.0 and PCR-GLOBWB) agree better with GRACE than others. Causes of model-GRACE discrepancies are attributed to missing storage compartments (e.g., surface water and/or groundwater) and underestimation of modeled storage capacities in tropical basins and to variations in modeled fluxes in northern basins. This study underscores the importance of considering water storage, in addition to water fluxes, to improve global models. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: Billions of people rely on groundwater as an accessible source for drinking water and irrigation, especially in times of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will impact groundwater systems globally and thus the availability of this vital resource. This study investigates uncertainties in groundwater recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-adjusted output of four global circulation models (GCMs). Preindustrial and current groundwater recharge values are compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways (RCPs). Results suggest that the uncertainty range is extensive, and projections with confidence can only be made for specific regions of the world. In some regions, reversals of groundwater recharge trends can be observed with global warming. On average, a consistent median increase of groundwater recharge in northern Europe of 19 % and a decrease of 10 % in the Amazon at 3 °C GW compared to preindustrial levels are simulated. In the Mediterranean, a 2 °C GW leads to a reduction of GWR of 38 %. Because most GHMs do not include CO2 driven vegetation processes, we investigate how, including the effect of evolving CO2 concentrations into the calculation of future groundwater recharge impacts the results. In some regions, the inclusion of these processes leads to differences in groundwater recharge changes of up to 100 mm year−1. Overall, models that include CO2 driven vegetation processes simulate less severe decreases of groundwater recharge and in some regions even increases instead of decreases. In regions where GCMs predict decreases in precipitation, and groundwater availability is most important, the model agreement among GHMs with dynamic vegetation is lowest in contrast to GHMs without, which show a high agreement.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: Importance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: Future flood and drought risks have been predicted to transition from moderate to high levels at global warmings of 1.5 °C and 2.0 °C above pre-industrial levels, respectively. However, these results were obtained by approximating the equilibrium climate using transient simulations with steadily warming. This approach was recently criticised due to the warmer global land temperature and higher mean precipitation intensities of the transient climate in comparison with the equilibrium climate. Therefore, it is unclear whether floods and droughts projected under a transient climate can be systematically substituted for those occurring in an equilibrated climate. Here, by employing a large ensemble of global hydrological models (HMs) forced by global climate models, we assess the validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Differences in flood characteristics under transient and equilibrium climates could be largely ascribed to natural variability, indicating that the floods derived from a transient climate reasonably approximate the floods expected in an equally warm, equilibrated climate. By contrast, significant differences in drought intensity between transient and equilibrium climates were detected over a larger global land area than expected from natural variability. Despite the large differences among HMs in representing the low streamflow regime, we found that the drought intensities occurring under a transient climate may not validly represent the intensities in an equally warm equilibrated climate for approximately 6.7% of the global land area.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Description: In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Potsdam Institute for Climate Impact Research
    In:  ISIpedia - The open inter-sectoral impacts encyclopedia
    Publication Date: 2022-03-21
    Description: Lange et al. (2020) used global climate models and global hydrological models to project how global warming might change the exposure of land and population to droughts around the world. A summary of that study including results at the global and national level is provided in the associated global ISIpedia article. Here we present additional results at the national and grid level for Turkey. Important limitations of these country-specific results are discussed in the last section of this report.
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...