ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: The successful operation of long-life, highly loaded mechanisms used for planetary exploration or autonomous structures assembly will depend upon the ability to effectively lubricate rolling-element bearings. As new tools are developed (i.e., drill, abraders, robotic manipulators, etc.) that interact with their environment in a more direct manner, lubricants will be pushed past the bounds that current scientific literature has published. This paper details results from bearing lubrication lifetime testing performed in support of Honeybee Robotics development of the Mars Science Laboratory (MSL) Surface Removal Tool (SRT). This testing was done due to the lack of available data in research literature that is applicable to the lubrication regime the SRT bearings are being designed for. Based on the test results, the chosen bearing arrangement can be used for the SRT Grind Shaft bearings with the use of a Braycote Micronic 601EF grease-plate with a 10 vol% grease slurry fill (50/50 wt% Braycote Micronic 601EF and Brayco 815Z). This arrangement showed no signs of detrimental degradation over the course of the 3x life test. The purely grease-plated bearing ran at a consistently higher torque and showed signs of failure beginning at approximately 2.2 x 10(exp 7) revs (approximately 6.3 x 10(exp 7) stress-cycles) with a torque over-limit failure at approximately 4.5 x 10(exp 7) revs (approximately 1.3 x 10(exp 8) stress-cycles). Barring cold-start torque margin limitations, it is recommended that any long-life bearing application include some vol% grease-pack in addition to a standard grease-plate to reduce parasitic torque and increase bearing life. While these results are specific to a particular environment and loading condition, they demonstrate the extended capabilities of a commonly used flight lubricant outside of the range that is published in current research literature.
    Keywords: Nonmetallic Materials
    Type: 39th Aerospace Mechanisms Symposium; 69-82; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: The Icy Soil Acquisition Device is a first of its kind mechanism that is designed to acquire ice-bearing soil from the surface of the Martian polar region and transfer the samples to analytical instruments, playing a critical role in the potential discovery of existing water on Mars. The device incorporates a number of novel features that further the state of the art in spacecraft design for harsh environments, sample acquisition and handling, and high-speed low torque mechanism design.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: 39th Aerospace Mechanisms Symposium; 289-302; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-12
    Description: We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20min prior to its fast eruption and strong soft X-ray (SXR) flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, an SXR sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V magnetograms show that the pre-emption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measured the canceling network fields to be approx. 40 G, and we estimated that approx. 10(exp 19)Mx of flux canceled during the five hours prior to eruption; this is only approx.5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption.
    Keywords: Astronomy
    Type: Publications of the Astronomical Society of Japan; Volume 59; S823-S829
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (〈 about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing. Proper consideration of the various background components is vital to extend the reliable determination of cluster parameters to the largest possible cluster radii. The various components of the background including the quiescent particle background, cosmic diffuse emission, soft proton contamination, and solar wind charge exchange emission are discussed along with suggested means of their identification, filtering, and/or their modeling and subtraction. Every component is spectrally variable, sometimes significantly so, and all components except the cosmic background are temporally variable as well. The distributions of the events over the FOV vary between the components, and some distributions vary with energy. The scientific results from observations of low surface brightness objects and the diffuse background itself can be strongly affected by these background components and therefore great care should be taken in their consideration.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-12
    Description: The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-12
    Description: For all past and current human space missions, the final scheduling of tasks to be done in space has been devoid of crew control, flexibility, and insight. Ground controllers, with minimal input from the crew, schedule the tasks and uplink the timeline to the crew or uplink the command sequences to the hardware. Prior to the International Space Station (ISS), the crew could make requests about tomorrow s timeline, they could omit a task, or they could request that something in the timeline be delayed. This lack of control over one's own schedule has had negative consequences. There is anecdotal consensus among astronauts that control over their own schedules will mitigate the stresses of long duration missions. On ISS, a modicum of crew control is provided by the job jar. Ground controllers prepare a task list (a.k.a. "job jar") of non-conflicting tasks from which jobs can be chosen by the in space crew. Because there is little free time and few interesting non-conflicting activities, the task-list approach provides little relief from the tedium of being micro-managed by the timeline. Scheduling for space missions is a complex and laborious undertaking which usually requires a large cadre of trained specialists and suites of complex software tools. It is a giant leap from today s ground prepared timeline (with a job jar) to full crew control of the timeline. However, technological advances, currently in-work or proposed, make it reasonable to consider scheduling a collaborative effort by the ground-based teams and the in-space crew. Collaboration would allow the crew to make minor adjustments, add tasks according to their preferences, understand the reasons for the placement of tasks on the timeline, and provide them a sense of control. In foreseeable but extraordinary situations, such as a quick response to anomalies and extended or unexpected loss of signal, the crew should have the autonomous ability to make appropriate modifications to the timeline, extend the timeline, or even start over with a new timeline. The Vision for Space Exploration (VSE), currently being pursued by the National Aeronautics and Space Administration (NASA), will send humans to Mars in a few decades. Stresses on the human mind will be exacerbated by the longer durations and greater distances, and it will be imperative to implement stress-reducing innovations such as giving the crew control of their daily activities.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Determination of the shape of very thin x-ray mirrors employed in spaced-based telescopes continues to be challenging. The mirrors shapes are not readily deduced to the required accuracy because the mount induced distortions are often larger than the uncertainty tolerable for the mission metrology. In addition to static deformations, dynamic and thermal considerations are exacerbated for this class of mirrors. We report on the performance of one temporary mounting scheme for the thin glass mirrors for the Constellation-X mission and prospects for deducing their undistorted shapes.
    Keywords: Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...