ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-08
    Description: Efforts to increase inclusion in science face multiple barriers, including cultural and social behaviors in settings such as academic conferences. Conferences are beneficial, but the culture can promote inequities and power differentials that harm historically underrepresented groups. Science suffers when conference culture propagates exclusion and discrimination that leads to attrition of scientists. Codes of conduct represent a tool to shift conference culture to better support diverse scientists and clearly detail unacceptable behaviors. We examined the prevalence and content of codes of conduct at biology conferences in the United States and Canada. We highlight how codes of conduct address issues of sexual misconduct and identity-based discrimination. Surprisingly, only 24% of the 195 surveyed conferences had codes. Of the conferences with codes, 43% did not mention sexual misconduct and 17% did not mention identity-based discrimination. Further, 26% of these conferences failed to include a way to report violations of the code and 35% lacked consequences for misconduct. We found that larger and national conferences are more likely to have codes than smaller (P = 0.04) and international or regional (P = 0.03) conferences. Conferences that lack codes risk creating and perpetuating negative environments that make underrepresented groups feel unwelcome, or worse, actively cause harm. We recommend that conferences have codes that are easily accessible, explicitly address identity-based discrimination and sexual misconduct, provide channels for anonymous impartial reporting, and contain clear consequences. These efforts will improve inclusivity and reduce the loss of scientists who have been historically marginalized.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-06-12
    Description: For all past and current human space missions, the final scheduling of tasks to be done in space has been devoid of crew control, flexibility, and insight. Ground controllers, with minimal input from the crew, schedule the tasks and uplink the timeline to the crew or uplink the command sequences to the hardware. Prior to the International Space Station (ISS), the crew could make requests about tomorrow s timeline, they could omit a task, or they could request that something in the timeline be delayed. This lack of control over one's own schedule has had negative consequences. There is anecdotal consensus among astronauts that control over their own schedules will mitigate the stresses of long duration missions. On ISS, a modicum of crew control is provided by the job jar. Ground controllers prepare a task list (a.k.a. "job jar") of non-conflicting tasks from which jobs can be chosen by the in space crew. Because there is little free time and few interesting non-conflicting activities, the task-list approach provides little relief from the tedium of being micro-managed by the timeline. Scheduling for space missions is a complex and laborious undertaking which usually requires a large cadre of trained specialists and suites of complex software tools. It is a giant leap from today s ground prepared timeline (with a job jar) to full crew control of the timeline. However, technological advances, currently in-work or proposed, make it reasonable to consider scheduling a collaborative effort by the ground-based teams and the in-space crew. Collaboration would allow the crew to make minor adjustments, add tasks according to their preferences, understand the reasons for the placement of tasks on the timeline, and provide them a sense of control. In foreseeable but extraordinary situations, such as a quick response to anomalies and extended or unexpected loss of signal, the crew should have the autonomous ability to make appropriate modifications to the timeline, extend the timeline, or even start over with a new timeline. The Vision for Space Exploration (VSE), currently being pursued by the National Aeronautics and Space Administration (NASA), will send humans to Mars in a few decades. Stresses on the human mind will be exacerbated by the longer durations and greater distances, and it will be imperative to implement stress-reducing innovations such as giving the crew control of their daily activities.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: America has begun the development of a new space vehicle system which will enable humans to return to the moon and reach even farther destinations. The system is called Constellation: it has 2 earth-launch vehicles, Ares I and Ares V; a crew module, Orion; and a lander, Altair with descent and ascent stages. Ares V will launch an Earth Departure Stage (EDS) and Altair into low earth orbit. Ares I will launch the Orion crew module into low earth orbit where it will rendezvous and dock with the Altair and EDS "stack". After rendezvous, the stack will contain four complete rocket systems, each capable of independent operations. Of course this multiplicity of vehicles provides a multiplicity of opportunities for off-nominal behavior and multiple mitigation options for each. Contingency operations are complicated by the issues of crew safety and the possibility of debris from the very large components impacting the ground. This paper examines contingency operations of the EDS in low earth orbit, during the boost to translunar orbit, and after the translunar boost. Contingency operations under these conditions have not been a consideration since the Apollo era and analysis of the possible contingencies and mitigations will take some time to evolve. Since the vehicle has not been designed, much less built, it is not possible to evaluate contingencies from a root-cause basis or from a probability basis; rather they are discussed at an effects level (such as the reaction control system is consuming propellant at a high rate). Mitigations for the contingencies are based on the severity of the off-nominal condition, the time of occurrence, recovery options, options for alternate missions, crew safety, evaluation of the condition (forensics) and future prevention. Some proposed mitigations reflect innovation in thinking and make use of the multiplicity of on-orbit resources including the crew; example: Orion could do a "fly around" to allow the crew to determine the condition and cause of a partially separated payload shroud. Other mitigations are really alternate missions; example, an engine out on during ascent resulted in insufficient propellant for the lunar mission, but the on-orbit vehicle stack is otherwise perfect and can pursue an alternate mission, such as a high ballistic trajectory to test the high-speed atmospheric reentry of Orion. Evaluation and presentation of contingency operations at this early stage of the development of the Ares V rocket will improve the design of the vehicle and lay the groundwork for the exhaustive contingency planning which must be done after the vehicle is built as preparations for operations.
    Keywords: Launch Vehicles and Launch Operations
    Type: M09-0620 , SpcaeOps 2010 Conference: Delivering on the Dream; Apr 25, 2010 - Apr 30, 2010; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: America has begun the development of a new heavy lift rocket which will enable humans to return to the moon and reach even farther destinations. Five decades ago, the National Aeronautics and Space Administration designed a system (called Saturn/Apollo) to carry men to the moon and back; the rocket which boosted them to the moon was the Saturn V. Saturn V was huge relative to contemporary rockets and is still the largest rocket ever launched. The new moon rocket is called Ares V. It will insert 40% more payload into low earth orbit than Saturn V; and after docking with the crew spacecraft, it will insert 50% more payload onto the translunar trajectory than Saturn V. The current design of Ares V calls for two liquid-fueled stages and 2 "strap-on" solid rockets. The solid rockets are extended-length versions of the solid rockets used on the Shuttle. The diameter of the liquid stages is at least as large as the first stage of the Saturn V; the height of the lower liquid stage (called the core stage) is longer than the external tank of the Shuttle. Huge rockets require huge infrastructure and, during the Saturn/Apollo era, America invested significantly in manufacturing, assembly and launch facilities which are still in use today. Since the Saturn/Apollo era, America has invested in additional infrastructure for the Shuttle program. Ares V must utilize this existing infrastructure, with reasonable modifications. Building a rocket with 50% more capability in the same buildings, testing it in the same test stands, shipping on the same canals under the same bridges, assembling it in the same building, rolling it to the pad on the same crawler, and launching it from the same launch pad is an engineering and logistics challenge which goes hand-in-hand with designing the structure, tanks, turbines, engines, software, etc. necessary to carry such a large payload to earth orbit and to the moon. This paper quantitatively discusses the significant "tight fits" that are constraining Ares V. The engineers designing and building the infrastructure for the Saturn/Apollo program usually added margins and growth capability; sometimes the size of existing facilities (such as the width of a draw bridge) was not a constraint. Ares V may utilize the "extra" space in the existing facilities and expand other tight fits. Some of the tight fits cannot be overcome without great expense; raising the roof on the Vertical Assembly Building for example. Other tight fits are easily overcome; the transporter at the manufacturing facility for the core stage can pass under low ceilings and later over a dike (without dragging the middle) by retracting or extending the struts which support the stage. Tight fits discussed in this paper include manufacturing (jigs, widths, heights, and local transportation), testing (test stand sizes and crane capability), transportation to the test stands and the launch site (barge, waterway, and rail), assembly (VAB internal dimensions and door size), roll-out limits, and launch pad size.
    Keywords: Ground Support Systems and Facilities (Space)
    Type: M09-0619 , SpaceOps 2010 Conference: Delivering on the Dream; Apr 25, 2010 - Apr 30, 2010; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.
    Keywords: Administration and Management
    Type: 4th International Workshop on Planning and Scheduling for Space; Jun 23, 2004 - Jun 25, 2004; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Aerospace Conference; Mar 08, 2003 - Mar 15, 2003; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
    Keywords: Launch Vehicles and Launch Operations
    Type: SpaceOps 2008; May 12, 2008 - May 16, 2008; Heidelberg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEEAC Paper 1415 , IEEE Aerospace Conference 2007; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
    Keywords: Man/System Technology and Life Support
    Type: 5th International Workshop on Planning and Scheduling for Space (IWPSS); Oct 22, 2006 - Oct 25, 2006; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...