ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ENERGY PRODUCTION AND CONVERSION
  • 1990-1994  (9)
  • 1980-1984
  • 1930-1934
  • 1994  (9)
  • 1
    Publication Date: 2013-08-31
    Description: Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 63-79
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 643-651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 149-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The Upper Atmosphere Research Satellite (UARS), designed, built, integrated, tested, and operated by NASA and Martin Marietta is a low-Earth orbiting, Earth-observing spacecraft which was launched via Space Shuttle Discovery on September 12, 1991 and deployed three days later. The Modular Power Subsystem (MPS) onboard the satellite is equipped with three NASA Standard 50 Ampere-hour (Ah) nickel-cadmium (NiCd) batteries. McDonnell Douglas Electronics Systems Company fabricated the MPS, and batteries from Gates Aerospace Batteries cells. Nominal battery performance was achieved for the first four months of spacecraft operation. First evidence of anomalous battery performance was observed in January 1992, after the first maximum beta angle (low Depth of Discharge) period. Since then, the Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's UARS Project and Space Power Application Branch, has monitored and managed battery performance by adjusting solar array offset angle, conducting periodic deep discharge, and controlling battery recharge ratio. This paper covers a brief overview of the UARS, the FOT's operational battery management, and the observed spacecraft battery performance.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 459-489
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Viewgraphs on the battery study for the Mars Environmental Survey (MESUR) Pathfinder are presented. Topics covered include: MESUR pathfinder introduction; power subsystem concept; battery technology selection; mission battery performance; cell/battery baseline design; charge methodology; and proposed testing.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 119-131
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195420-VOL-2 , NAS 1.26:195420-VOL-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195420-VOL-1 , E-9361-VOL-1 , NAS 1.26:195420-VOL-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-197128 , NAS 1.26: 197128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-16
    Description: Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195320-APP-A-L , NAS 1.26:195320-APP-A-L , E-8735
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...