ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (42)
  • 1
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This study provides a descriptive characterization of the modern sedimentary processes in Lake Issyk Kul, Kyrgyzstan, important for the selection of a suitable coring or deep‐drilling site, interpretation of future core data and applicability of proxies. The quasi‐equidistant sampling grid of 66 sediment surface samples covers the entirety of the lake basin and is complemented by 10 samples from the major inflows. The methodological approach includes geochemical, granulometric, lipid biomarker, diatom, and statistical analyses. The quantitative and qualitative changes in sediment composition yield information on its generic origin and prevailing transport and depositional environments. The composition of the surface sediments in Issyk Kul is highly heterogenous. Nearshore deposition is mainly controlled by wave action and by fluvial sediment supply with highest quantities of detrital input coming from the high‐energetic, eastern tributaries. Sediments in the deep central basin are mainly produced in situ and dominated by authigenic calcite. Biogenic accumulation is overall low, except for the western extremity of the lake, where the nearshore, shallow‐water, and low‐energetic environment favors aquatic productivity and subsequent preservation of organic material and diatoms. Redeposition of sediments is a dominant process along the slopes across the southern and western basin floor, where run‐out distances of mass movement deposits are up to 5 km. Directional sediment transport by lake currents appears to be less important, except for the transport of very fine‐grained organic matter. Biomarker‐inferred temperature reconstructions suggest lake surface temperatures of ∼15°C in the western littoral zone and in Tyup Bay and a decrease to ∼13°C basinward.〈/p〉
    Description: Plain Language Summary: Intensive research on the natural component of climate variability on geological time scales is needed to better understand and validate current and future climate change. Lakes can provide continuous sediment successions that allow us to reconstruct regional trends in climate and environment dynamics far beyond the industrial age. In continental Eurasia, Lake Issyk Kul, one of the deepest and largest mountain lakes in the world, has long been targeted for a deep‐drilling campaign, because its sediment succession potentially holds information of the past ∼10 million years. Prerequisite for future drilling is a better understanding of prevailing transport and (re)deposition mechanisms in Lake Issyk Kul. The overarching aim of this study is to test the applicability of different proxies, vital for the interpretation of future sediment core data. Therefore, a quasi‐equidistant sampling grid of up to 66 sediment surface (and 10 river) samples spanning the entire lake basin of Lake Issyk Kul was examined by means of sedimentological, geochemical, biological, and statistical analyses. The interpretation provides insights into spatial differences in, for example, clastic input from major rivers, biogenic sedimentation, and endogenic precipitation of calcium carbonates.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉The study provides information on the prevailing transport and (re)deposition mechanisms in Lake Issyk Kul today〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Geochemical, granulometric, lipid biomarker, diatom, and statistical analyses were performed on surface sediment and inlet stream samples〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The results are prerequisite to interpret longer sediment successions from the lake〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.8059855
    Keywords: ddc:551.3 ; Issyk Kul ; modern sedimentary processes ; climate ; geochemistry ; grain‐size ; XRF ; lipid biomarker ; diatoms
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-27
    Description: Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30–70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10–30% and 10–80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-26
    Description: The stability and resilience of the Earth system and human well-being are inseparably linked[1,2,3], yet their interdependencies are generally under-recognized; consequently, they are often treated independently[4,5]. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)[4]. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
    Description: Abstract Main Quantifying ESBs Toward a safe and just future Methods Data availability Code availability References Acknowledgements Funding Author information Ethics declarations Peer review Additional information Extended data figures and tables
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-07
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-17
    Description: Dansgaard–Oeschger (D–O) events, millennial-scale climate oscillations between stadial and interstadial conditions (of up to 10–15 ∘C in amplitude at high northern latitudes), occurred throughout the Marine Isotope Stage 3 (MIS3; 27.8–59.4 ka) period. The climate modelling community up to now has not been able to answer the question of whether our climate models are too stable to simulate D–O events. To address this, this paper lays the ground-work for a MIS3 D–O protocol for general circulation models which are used in the International Panel for Climate Change (IPCC) assessments. We review the following: D–O terminology, community progress on simulating D–O events in these IPCC-class models (processes and published examples), and evidence about the boundary conditions under which D–O events occur. We find that no model exhibits D–O-like behaviour under pre-industrial conditions. Some, but not all, models exhibit D–O-like oscillations under MIS3 and/or full glacial conditions. Greenhouse gases and ice sheet configurations are crucial. However most models have not run simulations of long enough duration to be sure which models show D–O-like behaviour, under either MIS3 or full glacial states. We propose a MIS3 baseline protocol at 34 ka, which features low obliquity values, medium to low MIS3 greenhouse gas values, and the intermediate ice sheet configuration, which our review suggests are most conducive to D–O-like behaviour in models. We also provide a protocol for a second freshwater (Heinrich-event-preconditioned) experiment, since previous work suggests that this variant may be helpful in preconditioning a state in models which is conducive to D–O events. This review provides modelling groups investigating MIS3 D–O oscillations with a common framework, which is aimed at (1) maximising the chance of the occurrence of D–O-like events in the simulations, (2) allowing more precise model–data evaluation, and (3) providing an adequate central point for modellers to explore model stability.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-25
    Description: Mountain glaciers are sensitive recorders of natural and human-induced climate change. Therefore, it is imperative to obtain a comprehensive understanding of the interplay between climate and glacier response on both short and long timescales. Here we present an analysis of oxygen and carbon isotope data from speleothems formed mainly below a glacier-covered catchment in the Alps 300,000 to 200,000 years ago. Isotope-enabled climate model simulations reveal that δ18O of precipitation in the Alps was higher by approximately 1 ‰ during interstadials compared to stadials. This agrees with interstadial-stadial amplitudes of our new speleothem-based estimate after correcting for cave-internal effects. We propose that the variability of these cave-internal effects offers a unique tool for reconstructing long-term dynamics of warm-based Alpine palaeoglaciers. Our data thereby suggests a close link between North Atlantic interstadial-stadial variability and the meltwater dynamics of Alpine glaciers during Marine Isotope Stage 8 and 7d.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: On a beautiful summer day Emma and Steven want to have fun at their favourite lake. However, a mysterious situation thwarts their plans. This leads the two friends on an unexpected quest ... Join Emma and Steven as they explore the vast, intriguing and efficient world of stable isotopes: What are isotopes? How do isotopes work? And last but not least, how can isotopes help Emma and Steven to finally answer the question: Who poisoned Family Mole?
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-26
    Description: We present a 1D shear‐velocity model for Los Humeros geothermal field (Mexico) obtained from three‐component beamforming of ambient seismic noise, imaging for the first time the bottom of the sedimentary basement ∼5km below the volcanic caldera, as well as the brittle‐ductile transition at ∼10km depth. Rayleigh‐wave dispersion curves are extracted from ambient seismic noise measurements and inverted using a Markov chain Monte Carlo scheme. The resulting probability density function provides the shear‐velocity distribution down to 15 km depth, hence, much deeper than other techniques applied in the area. In the upper 4 km, our model conforms to a profile from local seismicity analysis and matches geological structure inferred from well logs, which validates the methodology. Complementing information from well logs and outcrops at the near surface, discontinuities in the seismic profile can be linked to geological transitions allowing us to infer structural information of the deeper subsurface. By constraining the extent of rocks with brittle behavior and permeability conditions at greater depths, our results are of paramount importance for the future exploitation of the reservoir and provide a basis for the geological and thermodynamic modeling of active superhot geothermal systems, in general.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The latest generation of GPS satellites, termed Block IIF, provides a new L5 signal. Multi-frequency signals open new prospects for precise positioning and fast ambiguity resolution and have become the trend in Global Navigation Satellite System (GNSS) development. However, a new type of inter-frequency clock bias (IFCB), i.e., the difference between the current clock products computed with L1/L2 and the satellite clocks computed with L1/L5, was noticed. Consequently, the L1/L2 clock products cannot be used for L1/L5 precise point positioning (PPP). In order to solve this issue, the IFCB should be estimated with a high accuracy. Datasets collected at 129 globally distributed Multi-GNSS Experiment (MGEX) stations from 2015 are employed to investigate the IFCB. The results indicate that the IFCB is satellite dependent and varies with the relative sun–spacecraft–earth geometry. Other factors, however, may also contribute to the IFCB variations according to the harmonic analysis of the single-day IFCB time series. In addition, the results show that the IFCB exhibits periodic signal with a notable period of 43,080 s and the peak-to-peak amplitude is 0.023–0.269 m. After considering a time lag of 240 s, the average cross-correlation coefficient between the IFCB series of two consecutive days is 0.943, and the prediction accuracy of IFCB is 0.006 m. A triple-frequency PPP model that takes the IFCB into account is proposed. When using 3-h datasets, the positioning accuracy of triple-frequency PPP can be improved by 19, 13 and 21 % compared with the L1/L2-based PPP in the east, north and up directions, respectively.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...