ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Englisch  (264)
  • 2020-2023  (263)
  • 1940-1944  (1)
  • 1920-1924
Sammlung
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Schriftenreihen ausleihbar
    Schriftenreihen ausleihbar
    Washington, DC : United States Gov. Print. Off.
    Dazugehörige Bände
    Signatur: SR 90.0002(194)
    In: Professional paper
    Materialart: Schriftenreihen ausleihbar
    Seiten: VI, 101 S. + 5 pl.
    Serie: U.S. Geological Survey professional paper 194
    Sprache: Englisch
    Standort: Kompaktmagazin unten
    Zweigbibliothek: GFZ Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-06
    Beschreibung: We analyze Hubble Space Telescope observations of Ganymede made with the Space Telescope Imaging Spectrograph between 1998 and 2017 to generate a brightness map of Ganymede's oxygen emission at 1,356 Å. Our Mercator projected map demonstrates that the brightness along Ganymede's northern and southern auroral ovals strongly varies with longitude. To quantify this variation around Ganymede, we investigate the brightness averaged over 36°‐wide longitude corridors centered around the sub‐Jovian (0° W), leading (90° W), anti‐Jovian (180° W), and trailing (270° W) central longitudes. In the northern hemisphere, the brightness of the auroral oval is 3.7 ± 0.4 times lower in the sub‐Jovian and anti‐Jovian corridors compared to the trailing and leading corridors. The southern oval is overall brighter than the northern oval, and only 2.5 ± 0.2 times fainter on the sub‐ and anti‐Jovian corridors compared to the trailing and leading corridors. This demonstrates that Ganymede's auroral ovals are strongly structured in auroral crescents on the leading side (plasma downstream side) and on the trailing side (plasma upstream side). We also find that the brightness is not symmetric with respect to the 270° meridian, but shifted by ∼20° towards the Jovian‐facing hemisphere. Our map will be useful for subsequent studies to understand the processes that generate the aurora in Ganymede's non‐rotationally driven, sub‐Alfvénic magnetosphere.
    Beschreibung: Plain Language Summary: Northern lights often illuminate the night sky in a shimmering green or red tone at high geographic latitudes. This emission, scientifically referred to as aurora, is a result of electrically charged particles that move along Earth's magnetic field lines and interact with its atmosphere to produce auroral emission. Apart from the Earth, multiple other planets in our solar system also exhibit auroral emission. By characterizing the brightness and structure of these lights, we are therefore able to deduce insights about a planet's atmosphere, magnetic field and the physical processes occurring along the field lines from afar. In this work, we used observations from the Hubble Space Telescope to analyze the auroral emission of Jupiter's largest moon Ganymede. We combined multiple images of Ganymede to create the first complete map that displays the auroral brightness. Our map revealed that the emission on Ganymede's auroral ovals varies strongly in brightness with divisions into two distinct bright and faint regions. They resemble two auroral crescents in the north and south respectively, and demonstrate the uniqueness of Ganymede's aurora in comparison with the auroral ovals of other planets in the solar system.
    Beschreibung: Key Points: Brightness map of Ganymede's ultraviolet auroral emission has been constructed based on Hubble Space Telescope observations from 1998 to 2017. Auroral ovals are structured in upstream and downstream “crescents”. Brightness on sub‐Jovian and anti‐Jovian side is strongly reduced by a factor of 3–4 compared to upstream and downstream side.
    Beschreibung: European Research Council (ERC)
    Beschreibung: http://archive.stsci.edu/hst/
    Schlagwort(e): ddc:523
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-13
    Beschreibung: Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
    Beschreibung: Key Points: The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world. Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean. Virtually all socio‐economic sectors will be critically affected by the projected changes.
    Beschreibung: European Union Horizon 2020
    Beschreibung: https://esg-dn1.nsc.liu.se/search/esgf-liu/
    Schlagwort(e): ddc:551.6
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-09-29
    Beschreibung: The Working Group II contribution to the IPCC Sixth Assessment Report assesses the impacts of climate change, looking at ecosystems, biodiversity, and human communities at global and regional levels. It also reviews vulnerabilities and the capacities and limits of the natural world and human societies to adapt to climate change.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-07-20
    Beschreibung: Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various Representative Greenhouse Gas Concentration Pathways, all consistently bias-corrected on a 0.5° × 0.5° global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and for nearly 17,500 lakes using uncalibrated models and forcing data from the global grid where lakes are present. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-04-07
    Beschreibung: Hydrogen isotope ratios of sedimentary leaf waxes (δ2HWax values) are increasingly used to reconstruct past hydroclimate. Here, we add δ2HWax values from 19 lakes and four swamps on 15 tropical Pacific islands to an updated global compilation of published data from surface sediments and soils. Globally, there is a strong positive linear correlation between δ2H values of mean annual precipitation (δ2HP values) and the leaf waxes n‐C29‐alkane (R2 = 0.74, n = 665) and n‐C28‐acid (R2 = 0.74, n = 242). Tropical Pacific δ2HWax values fall within the predicted range of values based on the global calibration, and the largest residuals from the global regression line are no greater than those observed elsewhere, despite large uncertainties in δ2HP values at some Pacific sites. However, tropical Pacific δ2HWax values in isolation are not correlated with estimated δ2HP values from isoscapes or from isotope‐enabled general circulation models. Palynological analyses from these same Pacific sediment samples suggest no systematic relationship between any particular type of pollen distribution and deviations from the global calibration line. Rather, the poor correlations observed in the tropical Pacific are likely a function of the small range of δ2HP values relative to the typical residuals around the global calibration line. Our results suggest that δ2HWax values are currently most suitable for use in detecting large changes in precipitation in the tropical Pacific and elsewhere, but that ample room for improving this threshold exits in both improved understanding of δ2H variability in plants, as well as in precipitation.
    Beschreibung: Plain Language Summary: Past precipitation patterns are difficult to reconstruct, limiting our ability to understand Earth’s climate system. Geochemists reconstruct past precipitation by measuring the amount of heavy hydrogen naturally incorporated into the waxy coating of leaves, which is preserved in mud that accumulates in lakes, soils, and oceans. Heavy hydrogen in leaf waxes is strongly correlated with local precipitation, allowing us to learn about rainfall intensity, temperature, and cloud movement. However, no existing calibration studies include sites from the tropical Pacific, home to the most intense rainfall on the planet and populations that rely on rain for drinking water and farming. We measured heavy hydrogen in leaf waxes from tropical Pacific islands and show that although values are within the global calibration error, no precipitation relationship exists within the region. Plant type distributions do not explain the lack of correlation, which is best attributed to poorly constrained estimates of heavy hydrogen in local rain and the relatively small range of variability within the region. At present, heavy hydrogen from ancient leaf waxes can show large changes in past precipitation, but improved process‐level understanding is needed to use this tool to understand smaller changes in the tropical Pacific and elsewhere.
    Beschreibung: Key Points: Leaf wax 2H/1H ratios are correlated with mean annual precipitation 2H/1H ratios globally, but not in the tropical Pacific. Deviations from the global relationship between precipitation leaf wax 2H/1H ratios cannot be predicted from palynological assemblages. Small range and large uncertainties in estimates of tropical Pacific precipitation 2H/1H ratios likely account for poor correlations.
    Beschreibung: Swiss National Science Foundation
    Beschreibung: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Beschreibung: Natural Environment Research Council (NERC) http://dx.doi.org/10.13039/501100000270
    Beschreibung: Department of Education and Training, Australian Research Council (ARC) http://dx.doi.org/10.13039/501100000923
    Beschreibung: http://10.0.15.89/ethz-b-000412154
    Schlagwort(e): ddc:551 ; ddc:577.7
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-10-01
    Beschreibung: Internal water in cold‐water and tropical coral skeletons was extracted and measured for its oxygen and hydrogen isotope ratios. Water was extracted by crushing pieces of coral hard tissue in a percussion device connected to either a cavity ring‐down spectroscopy (CRDS) system or an isotope ratio mass spectrometry (IRMS) system. Despite most samples yielding sufficient water, each analytical system produces distinct isotope patterns. Experiments show that several characteristics specific to biominerals give rise to discrepancies and analytical artefacts that preclude the acquisition of reproducible isotope data. The main complication is that internal water in biogenic carbonates is distributed in an open interconnected micro‐network that readily exchanges with external water and potentially facilitates interaction with hydration water in the finely dispersed organic matrix in the coral skeleton. Furthermore, only an isotopically fractionated part of the internal water is released from the coral skeletons upon crushing. Altogether, isotope ratio measurement of internal water in corals with bulk crushing techniques does not give primary fluid isotope ratios useful for (palaeo‐)environmental or microbiological studies. As the resulting isotope patterns can show systematic behaviour per technique, isotope data may be erroneously interpreted to reflect the original calcifying fluid when using only a single technique to isotopically characterise internal fluids in coral skeletons.
    Beschreibung: Key Points: Free water trapped inside coral skeletons was extracted and isotopically analyzed on two commonly used techniques for fluid inclusion isotope analysis. Measured oxygen and hydrogen isotope ratios do not reproduce between the techniques due to several analytical artefacts. The water extracted from coral skeletons is not of primary origin.
    Beschreibung: Nederlandse Organisatie voor Wetenschappelijk Onderzoek http://dx.doi.org/10.13039/501100003246
    Beschreibung: Western Indian Ocean Marine Science Association http://dx.doi.org/10.13039/501100009106
    Schlagwort(e): ddc:551.9
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-12-06
    Beschreibung: A new method to determine fluid flux at high pressures and temperatures has been developed and used to study serpentinites at subduction zone conditions. Drill cores of a natural antigorite‐serpentinite with a strong foliation were used in multi‐anvil experiments in the range of 2–5 GPa and 450–800°C. Fluids released upon dehydration are fixed by the formation of brucite in an adjacent fluid sink. The amount and distribution of brucite serves as a proxy for fluid flow. In our specific setup the sample reacted with the surrounding fluid sink to form an additional layer of olivine, which has the potential to limit fluid flux within our experiments. For conditions prior to serpentine dehydration we used Al(OH)3 as fluid source. Fluid in this experiment did not migrate through the serpentinite, indicating that serpentine has a low diffusivity. The experiments also show that small deviatoric stresses have an influence on the fluid flux and can cause an anisotropic fluid flux. Comparison between the time scales of the determined fluid flux with fluid production rates indicates fluid pressure buildup during dehydration reactions. Adjacent less permeable layers can inhibit fluid flux and cause fluid pressure buildup even at conditions when an interconnected pore space formed.
    Beschreibung: Plain Language Summary: Subduction zones are regions where tectonic plates are recycled into the Earth's interior. Prior to subduction, the plates experienced extensive chemical interaction with the ocean water, forming hydrous minerals. Serpentine is an important hydrous mineral that can transport significant amounts of water into the Earth's interior. During subduction both pressure and temperature increase whereby hydrous minerals break down and release their water. The fluid migrates into the overlying mantle wedge, where it accounts for hydration as well as melting processes. The global flux balances would require this process to be very effective. However, it was so far not possible to measure the fluid flux at the subduction zone conditions in laboratories. In this study, we present a new method to determine the fluid flux prior and during dehydration. We found that prior to dehydration, the fluid flux in serpentinites is small. During dehydration the rocks ability to let fluids pass through increases. However, adjacent rocks with a low ability for fluid transport can further inhibit a fluid flux at these conditions. Generally, our experimental setup can be used for any system that immobilizes migrating fluids by hydration reactions.
    Beschreibung: Key Points: A new method to determine fluid flux at high pressure and temperature conditions is developed. Slow fluid migration in serpentinites promotes brittle fracturing in subduction zones. Fast fluid migration upon dehydration of serpentinites promotes large‐scale fluid flux, if not inhibited by adjacent less permeable layers.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: JSPS Japanese‐German Graduate Externship
    Beschreibung: Nederlandse Organisatie voor Wetenschappelijk Onderzoek http://dx.doi.org/10.13039/501100003246
    Beschreibung: https://doi.org/10.24416/UU01-PB440D
    Schlagwort(e): ddc:552.4 ; fluid flux ; multi‐anvil ; serpentine ; brucite ; dehydration ; excess pressure
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-06-24
    Beschreibung: Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X‐ray diffraction instrumentation in terms of X‐ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X‐ray beam to the sub‐micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal‐to‐noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single‐crystal data collection from grains of micrometer to sub‐micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub‐micrometer resolution at multimegabar pressures.
    Beschreibung: Facing the challenges of X‐ray diffraction from tiny samples subjected to multimegabar pressures, instrumentation developments are presented that enable, among other studies, single‐crystal data collection from micrometer‐ to sub‐micrometer‐sized grains. The developments are based on a sub‐micrometer beam capability employing compound refractive lenses operating with a phase correcting plate and a precise motorization solution.
    Schlagwort(e): ddc:548
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-08-05
    Beschreibung: This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution.
    Beschreibung: Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling.
    Beschreibung: Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM.
    Beschreibung: European Union H2020 ESM2025
    Beschreibung: European Union H2020 COMFORT
    Beschreibung: European Union H2020ESiWACE2
    Beschreibung: Deutsche Forschungsgemeinschaft TRR181
    Beschreibung: Deutsche Forschungsgemeinschaft EXC 2037
    Beschreibung: European Union H2020
    Beschreibung: Deutscher Wetterdienst
    Beschreibung: Bundesministerium fuer Bildung und Forschung
    Beschreibung: http://esgf-data.dkrz.de/search/cmip6-dkrz/
    Beschreibung: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Beschreibung: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
    Schlagwort(e): ddc:550.285 ; ddc:551.63
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...