ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2016-06-13
    Print ISSN: 1748-3387
    Electronic ISSN: 1748-3395
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-12-01
    Print ISSN: 0015-8003
    Electronic ISSN: 1439-0337
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-04
    Description: Key message Drivers of the abundance and richness of tree-related microhabitats are similar in mountain forests of Europe and North America and their occurrence may be explained by tree functional groups. Abstract A common approach to support forest-dwelling species in managed forests is to preserve valuable habitat trees. To assess the quality of habitat trees, a hierarchical typology of tree-related microhabitats (TreMs) is applied in the European context for inventory standardization. The first aim of this study was to evaluate whether it is possible to use this hierarchical typology as a standard protocol regardless of location, which is important for potentially standardizing future studies of TreMs, by testing whether the typology could be applied to the western North American mountain forests of Idaho. The second aim of the study was to analyse drivers that influence TreMs in forests of the region. Thirdly, we assessed whether the occurrence of TreMs could be explained by functional groups of trees across the western mountain forests of Idaho and Central European mountain forests, using TreM inventory data previously collected in the Black Forest, Germany. Abundance and richness of TreMs per tree were analyzed as a function of tree species, live status (dead vs. live trees), diameter at breast height (DBH), and site factors (latitude and altitude). Our results show that the TreM typology could be applied with slight modifications in the forests of Idaho. The abundance and richness of TreMs per tree increased with DBH. Snags offered more TreMs per tree than live trees. We were able to group tree species from the two continents in functional groups that were related to the occurrence of certain TreMs. Tree functional groups offer an opportunity to predict the role of certain tree species for habitat provision through TreMs. Combinations of trees from different functional groups could be used to optimize provisioning of TreMs within forest stands.
    Print ISSN: 0931-1890
    Electronic ISSN: 1432-2285
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biological Conservation 70 (1994), S. 237-243 
    ISSN: 0006-3207
    Keywords: Alps ; Tetrao urogallus ; Vaccinium myrtillus ; breeding ecology ; habitat selection ; survival
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-22
    Description: The Northern Chilean subduction zone is characterized by long-term subduction erosion with very little sediment input at the trench and the lack of an accretionary prism. Here, multichannel seismic reflection (MCS) data were acquired as part of the CINCA (Crustal Investigations off- and onshore Nazca Plate/Central Andes) project in 1995. These lines cover among others the central part of the MW 8.1 Iquique earthquake rupture zone before the earthquake occurred on 1 April 2014. We have re-processed one of the lines crossing the updip parts of this earthquake at 19°40′S, close to its hypocentre. After careful data processing and data enhancement, we applied a coherency-based pre-stack depth migration algorithm, yielding a detailed depth image. The resulting depth image shows the subduction interface prior to the Iquique megathrust earthquake down to a depth of approximately 16 km and gives detailed insight into the characteristics of the seismogenic coupling zone. We found significantly varying interplate reflectivity along the plate interface which we interpret to be caused by the comparably strong reflectivity of subducted fluid-rich sediments within the grabens and half-grabens that are predominant in this area due to the subduction-related bending of the oceanic plate. No evidence was found for a subducted seamount associated to the Iquique Ridge along the slab interface at this latitude as interpreted earlier from the same data set. By comparing relocated fore- and aftershock seismicity of the Iquique earthquake with the resulting depth image, we can divide the continental wedge into two domains. First, a frontal unit beneath the lower slope with several eastward dipping back-rotated splay faults but no seismicity in the upper plate as well as along the plate interface. Secondly, a landward unit beneath the middle slope with differing reflectivity that shows significant seismicity in the upper plate as well as along the plate interface. Both units are separated by a large eastward dipping mega splay fault, the root zone of which shows diffuse seismicity, both in the upper plate and at the interface. The identification of a well-defined nearly aseismic frontal unit sheds new light on the interplate locking beneath the lower continental slope and its controls.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-10
    Description: Along the Northern Chilean active continental margin, the subducting Nazca plate is characterized by a rough sea floor topography that has been suggested to control the rupture behaviour of megathrust earthquakes. However, there is still debate of what structures exactly controlled the extent of the rupture of the Mw 8.12014 April 1st Iquique earthquake and why it only broke 1/3 of a large seismic gap that last ruptured completely in 1877. To better understand the seismotectonic segmentation of the northern Chilean convergent margin, we use datasets from different geophysical and geodetic studies in this area to produce a 3D model. We combine depth migrated images of the two northernmost multi-channel seismic reflection CINCA’95 (Crustal Investigations off- and onshore Nazca Plate/Central Andes) lines, bathymetry data, coseismic slip models, geodetic coupling, seismic b values, relocated seismic events and the morphology of the subduction interface from gravity modelling. The interface morphology shows a prominent surface relief that spacially correlates with the rupture process of the mainshock on April 1st and also for the largest aftershock on April 3rd. The main slip area exhibits a strong correlation with a large elongated topographic depression of the subducting slab. An elongated topographic high on the subducting plate to the south of that depression correlates with low pre-seismic locking and very likely acted as a barrier for rupture propagation for the main shock, as well as for the largest after shock. A subducted circular topographic high of 25 km in diameter located updip of the rupture area, possibly prevented coseismic slip to rupture all the way up to the trench axis. Thus, our observations support that subducting sea floor morphology plays an important role controlling rupture processes.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Prominent trench-parallel fault systems in the arc and fore-arc of the Chilean subduction zone can be traced for several thousand kilometers in north–south direction. These fault systems possibly crosscut the entire crust above the subduction megathrust and are expected to have a close relationship to transient processes of the subduction earthquake cycles. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we re-processed the ANCORP'96 controlled-source seismic data set to provide images of the faults at depth and to allow linking geological information at the surface to subsurface structures. The correlation of the imaging results with observed hypocenter locations around these fault systems reveals the origin and the nature of the seismicity bound to these fault systems. Active and passive seismic data together yield a picture of a megathrust splay fault beneath the Longitudinal Valley at mid-crustal level, which can be observed from the top of the subduction plate interface and which seems to be connected to the Precordilleran Fault System (PFS) known at the surface. This result supports a previously proposed tectonic model where a megathrust splay fault defines the Western Altiplano as a crustal-scale fault-bend-fold. Furthermore, we clearly imaged two branches of the Uyuni-Kenayani Fault (UKF) in a depth range between 0 and 20 km. In summary, imaging of these faults is important for a profound understanding of the tectonic evaluation and characterization of the subduction zone environment, for which the results of this study provide a reliable basis.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...