English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A topographic depression on the subducting Nazca plate controls the April 1st 2014 M8.1 Iquique earthquake rupture in Northern Chile

Authors

Storch,  Ina
External Organizations;

Buske,  Stefan
External Organizations;

/persons/resource/pvictor

Victor,  Pia
4.1 Lithosphere Dynamics, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/oncken

Oncken,  O.
4.1 Lithosphere Dynamics, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Storch, I., Buske, S., Victor, P., Oncken, O. (2023): A topographic depression on the subducting Nazca plate controls the April 1st 2014 M8.1 Iquique earthquake rupture in Northern Chile. - Tectonophysics, 847, 229684.
https://doi.org/10.1016/j.tecto.2022.229684


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5014605
Abstract
Along the Northern Chilean active continental margin, the subducting Nazca plate is characterized by a rough sea floor topography that has been suggested to control the rupture behaviour of megathrust earthquakes. However, there is still debate of what structures exactly controlled the extent of the rupture of the Mw 8.12014 April 1st Iquique earthquake and why it only broke 1/3 of a large seismic gap that last ruptured completely in 1877. To better understand the seismotectonic segmentation of the northern Chilean convergent margin, we use datasets from different geophysical and geodetic studies in this area to produce a 3D model. We combine depth migrated images of the two northernmost multi-channel seismic reflection CINCA’95 (Crustal Investigations off- and onshore Nazca Plate/Central Andes) lines, bathymetry data, coseismic slip models, geodetic coupling, seismic b values, relocated seismic events and the morphology of the subduction interface from gravity modelling. The interface morphology shows a prominent surface relief that spacially correlates with the rupture process of the mainshock on April 1st and also for the largest aftershock on April 3rd. The main slip area exhibits a strong correlation with a large elongated topographic depression of the subducting slab. An elongated topographic high on the subducting plate to the south of that depression correlates with low pre-seismic locking and very likely acted as a barrier for rupture propagation for the main shock, as well as for the largest after shock. A subducted circular topographic high of 25 km in diameter located updip of the rupture area, possibly prevented coseismic slip to rupture all the way up to the trench axis. Thus, our observations support that subducting sea floor morphology plays an important role controlling rupture processes.