ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-25
    Description: There are several different mechanisms by which antioxidants induce DNA damage in cultured cells. In a Letter to the Editor, Kojo (1) suggests that one of these mechanisms, the generation of hydrogen peroxide (H2O2) resulting from the exposure of antioxidants to high levels of oxygen in cell culture media, could be primarily responsible for the DNA damage and cell death observed in in vitro studies using resveratrol, genistein, and baicalein (2). Thus, the author questions whether the three antioxidants could act as genotoxins (and by extension, chemotherapeutic agents) in vivo where oxygen concentrations are low. Although this is a valid...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-08
    Description: Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-beta activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457634/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457634/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mesa, Kailin R -- Rompolas, Panteleimon -- Zito, Giovanni -- Myung, Peggy -- Sun, Thomas Y -- Brown, Samara -- Gonzalez, David G -- Blagoev, Krastan B -- Haberman, Ann M -- Greco, Valentina -- 1R01AR063663-01/AR/NIAMS NIH HHS/ -- 2P50CA121974/CA/NCI NIH HHS/ -- 5 P30 AR053495-07/AR/NIAMS NIH HHS/ -- 5T32 GM007223/GM/NIGMS NIH HHS/ -- K08 AR066790/AR/NIAMS NIH HHS/ -- P30 AR053495/AR/NIAMS NIH HHS/ -- R01 AR063663/AR/NIAMS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jun 4;522(7554):94-7. doi: 10.1038/nature14306. Epub 2015 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA. ; Department of Biopathology and Medical Biotechnology, University of Palermo, via Divisi 83, 90100 Palermo, Italy. ; 1] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA [2] Department of Dermatology, Yale School of Medicine, New Haven, Connecticut 06510, USA. ; Department of Laboratory Medicine, Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06510, USA. ; 1] National Science Foundation, Arlington, Virginia 22230, USA [2] AA Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA [2] Department of Dermatology, Yale School of Medicine, New Haven, Connecticut 06510, USA [3] Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06510, USA [4] Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25849774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; *Cell Death ; Dermis/cytology/metabolism ; Epithelial Cells/*cytology/metabolism ; Hair Follicle/*cytology/metabolism ; Homeostasis ; Mice ; Phagocytes/cytology ; *Phagocytosis ; Regeneration ; Signal Transduction ; Stem Cell Niche/*physiology ; Stem Cells/*cytology/metabolism ; Transforming Growth Factor beta/metabolism ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-22
    Description: Wnt/beta-catenin signaling is critical for tissue regeneration. However, it is unclear how beta-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of beta-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. beta-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by beta-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/beta-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deschene, Elizabeth R -- Myung, Peggy -- Rompolas, Panteleimon -- Zito, Giovanni -- Sun, Thomas Yang -- Taketo, Makoto M -- Saotome, Ichiko -- Greco, Valentina -- 1R01AR063663-01/AR/NIAMS NIH HHS/ -- 2P50CA121974/CA/NCI NIH HHS/ -- 5P30 AR053495-07/AR/NIAMS NIH HHS/ -- K08 AR066790/AR/NIAMS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- R01 AR063663/AR/NIAMS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- TG32 GM007223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1353-6. doi: 10.1126/science.1248373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale Stem Cell Center, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Hair/*growth & development ; Hair Follicle/*cytology/*metabolism ; Ligands ; Mice ; Models, Biological ; Mutation ; Stem Cell Niche ; Stem Cells/cytology/*metabolism ; Tamoxifen/pharmacology ; Up-Regulation ; Wnt Proteins/genetics/metabolism ; *Wnt Signaling Pathway ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-04
    Description: Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2003-08-05
    Print ISSN: 1945-0877
    Electronic ISSN: 1937-9145
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...