ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-07
    Description: The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31 degrees C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fulton, P M -- Brodsky, E E -- Kano, Y -- Mori, J -- Chester, F -- Ishikawa, T -- Harris, R N -- Lin, W -- Eguchi, N -- Toczko, S -- Expedition 343, 343T, and KR13-08 Scientists -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1214-7. doi: 10.1126/science.1243641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311684" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-22
    Description: Nature Geoscience 6, 76 (2013). doi:10.1038/ngeo1677 Authors: Anthony A. P. Koppers, Toshitsugu Yamazaki, Jörg Geldmacher, Jeffrey S. Gee, Nicola Pressling, Hiroyuki Hoshi, L. Anderson, C. Beier, D. M. Buchs, L-H. Chen, B. E. Cohen, F. Deschamps, M. J. Dorais, D. Ebuna, S. Ehmann, J. G. Fitton, P. M. Fulton, E. Ganbat, C. Hamelin, T. Hanyu, L. Kalnins, J. Kell, S. Machida, J. J. Mahoney, K. Moriya, A. R. L. Nichols, S. Rausch, S-i. Sano, J. B. Sylvan & R. Williams
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-30
    Description: Nature Geoscience 5, 911 (2012). doi:10.1038/ngeo1638 Authors: Anthony A. P. Koppers, Toshitsugu Yamazaki, Jörg Geldmacher, Jeffrey S. Gee, Nicola Pressling, Anthony A. P. Koppers, Toshitsugu Yamazaki, Jörg Geldmacher, Jeffrey S. Gee, Nicola Pressling, Hiroyuki Hoshi, L. Anderson, C. Beier, D. M. Buchs, L-H. Chen, B. E. Cohen, F. Deschamps, M. J. Dorais, D. Ebuna, S. Ehmann, J. G. Fitton, P. M. Fulton, E. Ganbat, C. Hamelin, T. Hanyu, L. Kalnins, J. Kell, S. Machida, J. J. Mahoney, K. Moriya, A. R. L. Nichols, S. Rausch, S-i. Sano, J. B. Sylvan & R. Williams
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-21
    Description: Knowledge of the shear stress on a fault during slip is necessary for a physically-based understanding of earthquakes. Borehole temperature measurements inside the fault zone immediately after an earthquake can record the energy dissipated by this stress. In the first Wenchuan Earthquake Fault Zone Scientific Drilling Project hole (Sichuan province, China) we repeatedly measured temperature profiles from 1.3 to 5.3 yr after the 12 May 2008, M w 7.9 Wenchuan earthquake. The previously identified candidate for the principal slip surface had only a small local temperature increase of at most 0.02 °C with no obvious decay. The small amplitude of the temperature increase provides an upper bound for the frictional heat–generated coseismic slip, but is unlikely to be a frictionally generated signal. Two larger temperature anomalies are located above and within the fault zone. However, neither anomaly evolves as expected from a frictional transient. We conclude that the frictional heat from the Wenchuan earthquake remains elusive and the total heat generated at this location is much less than 29 MJ/m 2 . Low friction during slip is consistent with the temperature data.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-08
    Description: Transient fluid flow within faults is suspected to be an important component of the earthquake cycle and subduction zone evolution. However, an understanding of the mechanisms and time scales involved has been limited due to a paucity of direct measurements. Here we report on in situ observations that appear to capture the thermal signature of earthquake-driven fluid pulses within the damage zone of the Japan Trench plate boundary fault. The data are from a sub-seafloor temperature observatory installed through the fault following the March 2011 M w 9.0 Tohoku-oki earthquake as part of the Integrated Ocean Drilling Program’s Japan Trench Fast Drilling Project (JFAST). High-resolution temperature time series data reveal spatially correlated transients in response to earthquakes that are indicative of advection by transient fluid flow. We interpret the observed phenomenon as reflecting pressure redistribution in a fault zone and a potential mechanism for earthquake triggering and episodic heat and chemical transport.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-14
    Description: Transient fluid flow within faults is suspected to be an important component of the earthquake cycle and subduction zone evolution. However, an understanding of the mechanisms and time scales involved has been limited due to a paucity of direct measurements. Here we report on in situ observations that appear to capture the thermal signature of earthquake-driven fluid pulses within the damage zone of the Japan Trench plate boundary fault. The data are from a sub-seafloor temperature observatory installed through the fault following the March 2011 M w 9.0 Tohoku-oki earthquake as part of the Integrated Ocean Drilling Program’s Japan Trench Fast Drilling Project (JFAST). High-resolution temperature time series data reveal spatially correlated transients in response to earthquakes that are indicative of advection by transient fluid flow. We interpret the observed phenomenon as reflecting pressure redistribution in a fault zone and a potential mechanism for earthquake triggering and episodic heat and chemical transport.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2013-07-18
    Description: The Louisville Seamount Trail is a 4300 km long volcanic chain that has been built in the past 80 m.y. as the Pacific plate moved over a persistent mantle melting anomaly or hotspot. Because of its linear morphology and its long-lived age-progressive volcanism, Louisville is the South Pacific counterpart of the much better studied Hawaiian-Emperor Seamount Trail. Together, Louisville and Hawaii are textbook examples of two primary hotspots that have been keystones in deciphering the motion of the Pacific plate relative to a set of "fixed" deep-mantle plumes. However, drilling during Ocean Drilling Program (ODP) Leg 197 in the Emperor Seamounts documented a large ~15° southward motion of the Hawaiian hotspot prior to 50 Ma. Is it possible that the Hawaiian and Louisville hotspots moved in concert and thus constitute a moving reference frame for modeling plate motion in the Pacific? Alternatively, could they have moved independently, as predicted by mantle flow models that reproduce the observed latitudinal motion for Hawaii but that predict a largely longitudinal shift for the Louisville hotspot? These two end-member geodynamic models were tested during Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamount Trail. In addition, existing data from dredged lavas suggest that the mantle plume source of the Louisville hotspot has been remarkably homogeneous for as long as 80 m.y. These lavas are predominantly alkali basalts and likely represent a mostly alkalic shield-building stage, which is in sharp contrast to the massive tholeiitic shield-building stage of Hawaiian volcanoes. Geochemical and isotopic data for the recovered lavas during Expedition 330 will provide insights into the magmatic evolution and melting processes of individual Louisville volcanoes, their progression from shield-building to postshield and (maybe) posterosional stages, the temperature and depth of partial melting of their mantle plume source, and the enigmatic long-lived and apparent geochemical homogeneity of the Louisville mantle source. Collectively, this will enable us to characterize the Louisville Seamount Trail as a product of one of the few global primary hotspots, to better constrain its plume-lithosphere interactions, and to further test the hypothesis that the Ontong Java Plateau formed from the plume head of the Louisville mantle plume around 120 Ma. During Expedition 330 we replicated the drilling strategy of Leg 197, the first expedition to provide compelling evidence for the motion of the Hawaiian mantle plume between 80 and 50 Ma. For that reason we targeted Louisville seamounts that have ages similar to Detroit, Suiko, Nintoku, and Koko Seamounts in the Emperor Seamount Trail. In total, five seamounts were drilled in the Louisville Seamount Trail: Canopus, Rigil, Burton, Achernar, and Hadar Guyots (old to young). By analyzing a large number of time-independent in situ lava flows (and other volcanic eruptive products) from these seamounts using modern paleomagnetic, 40Ar/39Ar geochronological, and geochemical techniques, we will be able to directly compare the paleolatitude estimates and geochemical signatures between the two longest-lived hotspot systems in the Pacific Ocean. We drilled into the summits of the five Louisville guyots and reached volcanic basement at four of these drilling targets. In two cases we targeted larger seamount structures and drilled near the flanks of these ancient volcanoes, and in the other three cases we selected smaller edifices that we drilled closer to their centers. Drilling and logging plans for each of these sites were similar, with coring reaching 522.0 meters below seafloor (mbsf) for Site U1374 and 232.9, 65.7, 11.5, 182.8, and 53.3 mbsf for Sites U1372, U1373, U1375, U1376, and U1377, respectively. Some Expedition 330 drill sites were capped with only a thin layer of pelagic ooze between 6.6 and 13.5 m thick, and, if present, these were cored by using a low-rotation gravity-push technique with the rotary core barrel to maximize recovery. However, at Sites U1373 and U1376 no pelagic ooze was present, and the holes needed to be started directly into cobble-rich hardgrounds. In all cases, the bulk of the seamount sediment cover comprised sequences of volcanic sandstones and various kinds of basalt breccia or basalt conglomerate, which often were interspersed with basaltic lava flows, the spatter/tephra products of submarine eruptions, or other volcanic products, including auto-brecciated flows or peperites. Also several intervals of carbonate were cored, with the special occurrence of a ~15 m thick algal limestone reef at Site U1376 on Burton Guyot. In addition, some condensed pelagic limestone units were recovered on three of the other seamounts, but these did not exceed 30 cm in thickness. Despite their limited presence in the drilled sediment, these limestones provide valuable insights for the paleoclimate record at high ~50° southern latitudes since Mesozoic times. Several Louisville sites progressed from subaerial conditions in the top of volcanic basement into submarine eruptive environments, or drilling of the igneous basement immediately started in submarine volcanic sequences, as was the case for Sites U1376 and U1377 on Burton and Hadar Guyots. At three sites we cored 〉100 m into the igneous basement: 187.3 m at Site U1372, 505.3 m at Site U1374, and 140.9 m at Site U1376. At the other sites we did not core into basement (Site U1375) or we cored only 38.2 m (Site U1377) because of unstable hole conditions. Even so, drilling during Expedition 330 resulted in a large number of in situ lava flows, pillow basalts, or other types of volcanic products such as auto-brecciated lava flows, intrusive sheets or dikes, and peperites. In particular, the three holes on Canopus and Rigil Guyots (the two oldest seamounts drilled in the Louisville Seamount Trail), resulted in adequate numbers of in situ lava flows to average out paleosecular variation, with probable eruption ages estimated at ~78 and 73 Ma, respectively. Remarkably, at all drill sites large quantities of hyaloclastites, volcanic sandstones, and basaltic breccias were also recovered, which in many cases show consistent paleomagnetic inclinations compared to the lava flows bracketing these units. For Site U1374 on Rigil Guyot we also observed a magnetic polarity reversal in the cored sequence. Overall, this is very promising for determining a reliable paleolatitude record for the Louisville Seamounts following detailed postcruise examinations. The deeper penetrations of several hundred meters required bit changes and reentries using free-fall funnels. Basement penetration rates were 1.8–2.5 m/h depending on drill depth. In total, 1114 m of sediment and igneous basement at five seamounts was drilled, and 806 m was recovered (average recovery = 72.4%). At Site U1374 on Rigil Guyot, a total of 522 m was drilled, with a record-breaking 87.8% recovery. Most outstandingly, nearly all Expedition 330 core material is characterized by low degrees of alteration, providing us with a large quantity of samples of mostly well-preserved basalt, containing, for example, pristine olivine crystals with melt inclusions, fresh volcanic glass, unaltered plagioclase, carbonate, zeolite and celadonite alteration minerals, various micro- and macrofossils, and, in one case, mantle xenoliths and xenocrysts. The large quantity and excellent quality of the recovered sample material allow us to address all the scientific objectives of this expedition and beyond.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-09
    Description: The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...