ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-10
    Description: Mitotic chromosomes are among the most recognizable structures in the cell, yet for over a century their internal organization remains largely unsolved. We applied chromosome conformation capture methods, 5C and Hi-C, across the cell cycle and revealed two distinct three-dimensional folding states of the human genome. We show that the highly compartmentalized and cell type-specific organization described previously for nonsynchronous cells is restricted to interphase. In metaphase, we identified a homogenous folding state that is locus-independent, common to all chromosomes, and consistent among cell types, suggesting a general principle of metaphase chromosome organization. Using polymer simulations, we found that metaphase Hi-C data are inconsistent with classic hierarchical models and are instead best described by a linearly organized longitudinally compressed array of consecutive chromatin loops.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040465/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040465/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naumova, Natalia -- Imakaev, Maxim -- Fudenberg, Geoffrey -- Zhan, Ye -- Lajoie, Bryan R -- Mirny, Leonid A -- Dekker, Job -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- U54CA143874/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):948-53. doi: 10.1126/science.1236083. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School (UMMS), 368 Plantation Street, Worcester, MA 01605-0103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200812" target="_blank"〉PubMed〈/a〉
    Keywords: Biopolymers/chemistry ; Cell Cycle/genetics ; Chromatin/chemistry ; Chromosomes, Human, Pair 21/*chemistry ; HeLa Cells ; Humans ; Metaphase/genetics ; Mitosis/*genetics ; Models, Chemical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-10
    Description: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858594/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858594/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman-Aiden, Erez -- van Berkum, Nynke L -- Williams, Louise -- Imakaev, Maxim -- Ragoczy, Tobias -- Telling, Agnes -- Amit, Ido -- Lajoie, Bryan R -- Sabo, Peter J -- Dorschner, Michael O -- Sandstrom, Richard -- Bernstein, Bradley -- Bender, M A -- Groudine, Mark -- Gnirke, Andreas -- Stamatoyannopoulos, John -- Mirny, Leonid A -- Lander, Eric S -- Dekker, Job -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01HL06544/HL/NHLBI NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U54HG004592/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815776" target="_blank"〉PubMed〈/a〉
    Keywords: Biotin ; Cell Line, Transformed ; Cell Nucleus/*ultrastructure ; Chromatin/*chemistry ; Chromatin Immunoprecipitation ; *Chromosomes, Human/chemistry/ultrastructure ; Computational Biology ; DNA/*chemistry ; Gene Library ; *Genome, Human ; Humans ; In Situ Hybridization, Fluorescence ; Models, Molecular ; Monte Carlo Method ; Nucleic Acid Conformation ; Principal Component Analysis ; Protein Conformation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-14
    Description: Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression. Here we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive or Polycomb-repressed states, and observed distinct chromatin organizations for each state. All three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed domains show the densest packing and most intriguing chromatin folding behaviour, in which chromatin packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins play an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that is directly relevant to genome regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boettiger, Alistair N -- Bintu, Bogdan -- Moffitt, Jeffrey R -- Wang, Siyuan -- Beliveau, Brian J -- Fudenberg, Geoffrey -- Imakaev, Maxim -- Mirny, Leonid A -- Wu, Chao-ting -- Zhuang, Xiaowei -- R01 GM105637/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 21;529(7586):418-22. doi: 10.1038/nature16496. Epub 2016 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26760202" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...