ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-07
    Description: The contribution of changes in cis-regulatory elements or trans-acting factors to interspecies differences in gene expression is not well understood. The mammalian beta-globin loci have served as a model for gene regulation during development. Transgenic mice containing the human beta-globin locus, consisting of the linked embryonic (epsilon), fetal (gamma) and adult (beta) genes, have been used as a system to investigate the temporal switch from fetal to adult haemoglobin, as occurs in humans. Here we show that the human gamma-globin (HBG) genes in these mice behave as murine embryonic globin genes, revealing a limitation of the model and demonstrating that critical differences in the trans-acting milieu have arisen during mammalian evolution. We show that the expression of BCL11A, a repressor of human gamma-globin expression identified by genome-wide association studies, differs between mouse and human. Developmental silencing of the mouse embryonic globin and human gamma-globin genes fails to occur in mice in the absence of BCL11A. Thus, BCL11A is a critical mediator of species-divergent globin switching. By comparing the ontogeny of beta-globin gene regulation in mice and humans, we have shown that alterations in the expression of a trans-acting factor constitute a critical driver of gene expression changes during evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sankaran, Vijay G -- Xu, Jian -- Ragoczy, Tobias -- Ippolito, Gregory C -- Walkley, Carl R -- Maika, Shanna D -- Fujiwara, Yuko -- Ito, Masafumi -- Groudine, Mark -- Bender, M A -- Tucker, Philip W -- Orkin, Stuart H -- P01 HL032262/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 27;460(7259):1093-7. doi: 10.1038/nature08243. Epub 2009 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19657335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/*metabolism ; Embryo, Mammalian/metabolism ; Evolution, Molecular ; Fetus/metabolism ; *Gene Expression Regulation, Developmental ; Gene Silencing ; Globins/*genetics ; Hematopoiesis ; Humans ; Mice ; Nuclear Proteins/genetics/*metabolism ; Species Specificity ; beta-Globins/genetics ; gamma-Globins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-23
    Description: When considering the daunting complexity of eukaryotic genomes, some comfort can be found in the fact that the human genome may contain only 30,000 to 40,000 genes. Moreover, growing evidence suggests that genomes may be organized in such a way as to take advantage of space. A gene's location in the linear DNA sequence and its position in the three-dimensional nucleus can both be important in its regulation. Contrary to prevailing notions in this postgenomic era, the bacteriophage lambda, a paragon of simplicity, may still have a few things to teach us with respect to these facets of nonrandom genomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kosak, Steven T -- Groudine, Mark -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):644-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499009" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteriophage lambda/genetics ; Cell Cycle ; Cell Nucleus/physiology ; Chromosomes/genetics/physiology ; Chromosomes, Human/genetics/physiology ; *Gene Expression Regulation ; Gene Expression Regulation, Viral ; *Gene Order ; *Genome ; Genome, Human ; Genome, Viral ; Humans ; Multigene Family ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-08
    Description: Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736582/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736582/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neph, Shane -- Vierstra, Jeff -- Stergachis, Andrew B -- Reynolds, Alex P -- Haugen, Eric -- Vernot, Benjamin -- Thurman, Robert E -- John, Sam -- Sandstrom, Richard -- Johnson, Audra K -- Maurano, Matthew T -- Humbert, Richard -- Rynes, Eric -- Wang, Hao -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Diegel, Morgan -- Roach, Vaughn -- Dunn, Douglas -- Neri, Jun -- Schafer, Anthony -- Hansen, R Scott -- Kutyavin, Tanya -- Giste, Erika -- Weaver, Molly -- Canfield, Theresa -- Sabo, Peter -- Zhang, Miaohua -- Balasundaram, Gayathri -- Byron, Rachel -- MacCoss, Michael J -- Akey, Joshua M -- Bender, M A -- Groudine, Mark -- Kaul, Rajinder -- Stamatoyannopoulos, John A -- F30 DK095678/DK/NIDDK NIH HHS/ -- HG004592/HG/NHGRI NIH HHS/ -- P30 CA015704/CA/NCI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- RC2HG005654/HG/NHGRI NIH HHS/ -- U54 HG004592/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):83-90. doi: 10.1038/nature11212.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955618" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*genetics ; *DNA Footprinting ; DNA Methylation ; DNA-Binding Proteins/metabolism ; Deoxyribonuclease I/metabolism ; *Encyclopedias as Topic ; Genome, Human/*genetics ; Genomic Imprinting ; Genomics ; Humans ; *Molecular Sequence Annotation ; Polymorphism, Single Nucleotide/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/*metabolism ; Transcription Initiation Site
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-21
    Description: The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining approximately 8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is approximately 95% similar with that derived from human TF footprints. However, only approximately 20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405208/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405208/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stergachis, Andrew B -- Neph, Shane -- Sandstrom, Richard -- Haugen, Eric -- Reynolds, Alex P -- Zhang, Miaohua -- Byron, Rachel -- Canfield, Theresa -- Stelhing-Sun, Sandra -- Lee, Kristen -- Thurman, Robert E -- Vong, Shinny -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Giste, Erika -- Dunn, Douglas -- Vierstra, Jeff -- Hansen, R Scott -- Johnson, Audra K -- Sabo, Peter J -- Wilken, Matthew S -- Reh, Thomas A -- Treuting, Piper M -- Kaul, Rajinder -- Groudine, Mark -- Bender, M A -- Borenstein, Elhanan -- Stamatoyannopoulos, John A -- FDK095678A/PHS HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- RC2HG005654/HG/NHGRI NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- U01ES01156/ES/NIEHS NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- U54HG004592/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):365-70. doi: 10.1038/nature13972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA [2] Department of Medicine, University of Washington, Seattle, Washington 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Division of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA. ; 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA [2] Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98102, USA [3] Santa Fe Institute, Santa Fe, New Mexico 87501, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence/*genetics ; DNA Footprinting ; *Evolution, Molecular ; Gene Expression Regulation, Developmental/genetics ; Gene Regulatory Networks/genetics ; Humans ; Mammals/*genetics ; Mice ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-11-03
    Description: The human beta-globin locus control region (LCR) controls the transcription, chromatin structure, and replication timing of the entire locus. DNA replication was found to initiate in a transcription-independent manner within a region located 50 kilobases downstream of the LCR in human, mouse, and chicken cells containing the entire human beta-globin locus. However, DNA replication did not initiate within a deletion mutant locus lacking the sequences that encompass the LCR. This mutant locus replicated in the 3' to 5' direction. Thus, interactions between distantly separated sequences can be required for replication initiation, and factors mediating this interaction appear to be conserved in evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aladjem, M I -- Groudine, M -- Brody, L L -- Dieken, E S -- Fournier, R E -- Wahl, G M -- Epner, E M -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):815-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute, San Diego, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Cell Line ; Chickens ; *DNA Replication ; Globins/*genetics ; Humans ; Hybrid Cells ; Mice ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sequence Deletion ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krumm, A -- Groudine, M -- New York, N.Y. -- Science. 1995 Sep 8;269(5229):1400-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Hutchinson Cancer Center, Seattle, WA 98104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7660121" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Directed RNA Polymerases/metabolism ; Gene Expression Regulation ; *Genes, Tumor Suppressor ; Humans ; *Ligases ; Neoplasms/*genetics ; Nuclear Proteins/*genetics/physiology ; Transcription Factors/*physiology ; *Transcription, Genetic ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-10-10
    Description: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858594/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858594/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman-Aiden, Erez -- van Berkum, Nynke L -- Williams, Louise -- Imakaev, Maxim -- Ragoczy, Tobias -- Telling, Agnes -- Amit, Ido -- Lajoie, Bryan R -- Sabo, Peter J -- Dorschner, Michael O -- Sandstrom, Richard -- Bernstein, Bradley -- Bender, M A -- Groudine, Mark -- Gnirke, Andreas -- Stamatoyannopoulos, John -- Mirny, Leonid A -- Lander, Eric S -- Dekker, Job -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01HL06544/HL/NHLBI NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U54HG004592/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815776" target="_blank"〉PubMed〈/a〉
    Keywords: Biotin ; Cell Line, Transformed ; Cell Nucleus/*ultrastructure ; Chromatin/*chemistry ; Chromatin Immunoprecipitation ; *Chromosomes, Human/chemistry/ultrastructure ; Computational Biology ; DNA/*chemistry ; Gene Library ; *Genome, Human ; Humans ; In Situ Hybridization, Fluorescence ; Models, Molecular ; Monte Carlo Method ; Nucleic Acid Conformation ; Principal Component Analysis ; Protein Conformation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-21
    Description: To study the evolutionary dynamics of regulatory DNA, we mapped 〉1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierstra, Jeff -- Rynes, Eric -- Sandstrom, Richard -- Zhang, Miaohua -- Canfield, Theresa -- Hansen, R Scott -- Stehling-Sun, Sandra -- Sabo, Peter J -- Byron, Rachel -- Humbert, Richard -- Thurman, Robert E -- Johnson, Audra K -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Giste, Erika -- Haugen, Eric -- Dunn, Douglas -- Wilken, Matthew S -- Josefowicz, Steven -- Samstein, Robert -- Chang, Kai-Hsin -- Eichler, Evan E -- De Bruijn, Marella -- Reh, Thomas A -- Skoultchi, Arthur -- Rudensky, Alexander -- Orkin, Stuart H -- Papayannopoulou, Thalia -- Treuting, Piper M -- Selleri, Licia -- Kaul, Rajinder -- Groudine, Mark -- Bender, M A -- Stamatoyannopoulos, John A -- 1RC2HG005654/HG/NHGRI NIH HHS/ -- 2R01HD04399709/HD/NICHD NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 HD043997/HD/NICHD NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):1007-12. doi: 10.1126/science.1246426.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. ; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute. ; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. ; Howard Hughes Medical Institute. Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA. ; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Radiation Oncology, University of Washington, Seattle, WA 98109, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. jstam@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25411453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA/*genetics ; Deoxyribonuclease I ; *Evolution, Molecular ; Genome, Human ; Humans ; Mice ; Regulatory Sequences, Nucleic Acid/*genetics ; Restriction Mapping ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-11-27
    Description: The c-myc proto-oncogene is involved in chromosomal translocations that are specifically and consistently found in Burkitt lymphoma. Although these translocations are thought to lead to a deregulation of c-myc expression, the structural and functional basis of this phenomenon has not been identified. Mutations in a specific region spanning approximately 70 base pairs and located at the 3' border of the first exon of translocated c-myc alleles were consistently detected in Burkitt lymphoma cells carrying classic (8:14) as well as variant (8:22 and 2:8) translocations. These structural alterations were accompanied by an altered pattern of c-myc transcription, namely, the removal of a block to transcriptional elongation that has been mapped to the same region. Thus, specific c-myc mutations leading to the alleviation of this block to transcriptional elongation may represent a general mechanism causing c-myc activation in Burkitt lymphoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cesarman, E -- Dalla-Favera, R -- Bentley, D -- Groudine, M -- NCI 28151/CI/NCPDCID CDC HHS/ -- NCI 37165/CI/NCPDCID CDC HHS/ -- NCI 37195/CI/NCPDCID CDC HHS/ -- New York, N.Y. -- Science. 1987 Nov 27;238(4831):1272-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, New York University School of Medicine, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3685977" target="_blank"〉PubMed〈/a〉
    Keywords: Burkitt Lymphoma/*genetics ; Cell Line ; Chromosomes, Human, Pair 14 ; Chromosomes, Human, Pair 2 ; Chromosomes, Human, Pair 22 ; Chromosomes, Human, Pair 8 ; *Exons ; Humans ; *Mutation ; *Proto-Oncogenes ; *Transcription, Genetic ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1985-05-31
    Description: The chromatin structure characteristic of constitutively expressed genes, tissue-specific genes, and inactive genes is absent in chicken sperm chromatin. However, point sites of undermethylation in sperm DNA within constitutively expressed genes, but not within globin genes or an inactive gene, correspond to the location of regions of altered chromatin structure (hypersensitive sites) in somatic tissue and spermatogonial cells. A de novo methylation process whereby regions within and flanking these genes become methylated, but which excludes the methylation of sequences within hypersensitive sites, occurs between the spermatogonial stage and the first meiotic prophase. These undermethylated regions may play a role in the activation of the paternal genome during embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groudine, M -- Conkin, K F -- F32CA07476/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1985 May 31;228(4703):1061-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2986289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chick Embryo/*physiology ; Chickens/*genetics ; Chromatin/*ultrastructure ; DNA Restriction Enzymes ; DNA, Viral/genetics ; Deoxyribonuclease I ; Endonucleases ; *Gene Expression Regulation ; Globins/genetics ; Male ; *Methylation ; Single-Strand Specific DNA and RNA Endonucleases ; Spermatogenesis ; Spermatozoa/*physiology ; Thymidine Kinase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...