ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Thomas et al. reply — We reconsider our estimates of climate-related extinction in the light of three questions raised by Thuiller et al., Buckley and Roughgarden and Harte et al.. We are able to confirm our original conclusion that climate change represents a major ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Doubling of the current atmospheric CO2 concentration, and an increase in global mean annual temperatures of 1.5–6 °C, have been predicted to occur by the end of this century. Whilst the separate effects of CO2 and temperature on plant–insect interactions have been examined in a number of studies, few have investigated their combined impact. We carried out a factorial experiment to explore the effect of a doubling of CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the leaf-miner, Dialectica scalariella, in the host plant Paterson's Curse, Echium plantagineum.Elevated CO2 increased biomass, reduced leaf N and increased C:N ratios in the host plants. Leaf thickness also increased under elevated CO2, but only in the high-temperature treatment. Female D. scalariella did not discriminate between plants grown at the different CO2 levels when ovipositing, despite the reduction in foliage quality under elevated CO2. Overall, the negative response of D. scalariella to elevated CO2 was greater than for many species of free-living insects, presumably because of the limited mobility imposed by the leaf-mining habit. Development was accelerated at the high temperature and slowed under elevated CO2. The net result was a reduction in development time of ∼14 days in the elevated CO2/high temperature treatment, compared to the ambient CO2/low temperature treatment. Larval survivorship and adult moth weight were both affected by a significant interaction between CO2 and temperature. At the low temperature, CO2 had little effect on survivorship, but at the high temperature, survivorship was significantly reduced under elevated CO2. Similarly, elevated CO2 had a stronger negative effect on adult moth weight when combined with the high-temperature treatment. A possible explanation for these results is that the high temperature accelerated insect development to such an extent that the larvae did not have sufficient feeding time to compensate for the poorer quality of the foliage.The frequency with which interactions between CO2 and temperature affected both plant and insect performance in this study highlights the need for caution when predicting the effects of future climate change on plant–insect interactions from single-factor experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C.The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario.By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Pty
    Austral ecology 28 (2003), S. 0 
    ISSN: 1442-9993
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract  This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ∼0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover.Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming.Australia lacks the long-term datasets and tradition of phenological monitoring that have allowed the detection of climate-change-related trends in the Northern Hemisphere. Long-term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate-induced change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    Austral ecology 30 (2005), S. 0 
    ISSN: 1442-9993
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract  The structure of free-living arthropod communities on the foliage of Acacia falcata was assessed along an extensive latitudinal gradient in eastern Australia. We hypothesized that abundance and biomass of arthropods within feeding groups would increase from temperate latitudes towards the tropics. We also hypothesized that the ratio of carnivores to herbivores would be consistent along the latitudinal gradient. Three sites at each of four latitudes, spanning 9° and 1150 km (Batemans Bay, Sydney, Grafton, Gympie in Australia), were sampled every season for 2 years, using pyrethrum knockdown. Abundance and biomass (based on dry weight) of arthropods within eight feeding groups were measured. The relative size of the feeding groups, and the ratio of carnivores to herbivores were then compared among latitudes and seasons. We found no consistent north to south (tropical to temperate) change in feeding group structure in terms of abundance. A weak latitudinal trend was evident for predator biomass, consisting of a reduction from north to south, but no significant trends in biomass for other feeding groups were found. Relative abundance and relative biomass of both carnivores and herbivores, as well as the ratio of carnivores to herbivores were consistent among latitudes. Finally, we compared a subset of these data to arthropod communities found on congeneric host species at individual sites along the latitudinal gradient. Overall, 68% of comparisons showed no significant differences in abundance or biomass within different feeding groups between host plants and among latitudes. We conclude that arthropod communities show consistencies among latitudes and between congeneric host species, in terms of feeding group and trophic structure. These results have implications for predicting the impacts of future climate change on arthropod communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 362 (1993), S. 299-299 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR — Peter Moore (Nature 361, 304; 1993), in his News and Views discussing our paper on apparent convergence between stick-insect eggs and ant-dispersed seeds, wonders how a stick-insect nymph might fare should it hatch from an egg in an active ant nest. S. G. Compton and A. B. Ware (Psyche ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-01
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2012-05-17
    Print ISSN: 1387-3547
    Electronic ISSN: 1573-1464
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...