ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-17
    Description: Author(s): X. Q. Yan, G. H. Liu, and J. Chee [Phys. Rev. A 88, 039901] Published Mon Sep 16, 2013
    Keywords: Errata
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-18
    Description: Switching cell fate, ncRNAs coming to play Cell Death and Disease 4, e464 (January 2013). doi:10.1038/cddis.2012.196 Authors: D Guan, W Zhang, W Zhang, G-H Liu & J C Izpisua Belmonte
    Keywords: ncRNAslncRNAsmicroRNAsreprogrammingtrans-differentiation
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-27
    Description: Author(s): X. Q. Yan, G. H. Liu, and J. Chee We study quantum discord by using the geometric measure of quantum discord for a class of quantum states with bound entanglement. It is found that there exists a nondynamic sudden change in quantum discord accompanying transition from bound entanglement to free entanglement. The calculations present... [Phys. Rev. A 87, 022340] Published Tue Feb 26, 2013
    Keywords: Quantum information
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-25
    Description: Author(s): Y. G. Ma (马余刚), G. H. Liu (刘桂华), X. Z. Cai (蔡翔舟), D. Q. Fang (方德清), W. Guo (郭威), W. Q. Shen (沈文庆), W. D. Tian (田文栋), and H. W. Wang (王宏伟) Hard photons emitted from energetic heavy-ion collisions are very interesting since they do not experience nuclear interaction, and therefore they are useful to explore properties of nuclear matter. We investigated hard-photon production and its properties in intermediate-energy heavy-ion collisions... [Phys. Rev. C 85, 024618] Published Fri Feb 24, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-25
    Description: Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Guang-Hui -- Barkho, Basam Z -- Ruiz, Sergio -- Diep, Dinh -- Qu, Jing -- Yang, Sheng-Lian -- Panopoulos, Athanasia D -- Suzuki, Keiichiro -- Kurian, Leo -- Walsh, Christopher -- Thompson, James -- Boue, Stephanie -- Fung, Ho Lim -- Sancho-Martinez, Ignacio -- Zhang, Kun -- Yates, John 3rd -- Izpisua Belmonte, Juan Carlos -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 DA025779/DA/NIDA NIH HHS/ -- R01 DA025779-01/DA/NIDA NIH HHS/ -- R01-DA025779/DA/NIDA NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-25A1/CA/NCI NIH HHS/ -- England -- Nature. 2011 Apr 14;472(7342):221-5. doi: 10.1038/nature09879. Epub 2011 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21346760" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/metabolism/pathology/physiology ; Aging, Premature/genetics/pathology/physiopathology ; Calcium-Binding Proteins/analysis ; Cell Aging ; Cell Differentiation ; Cell Line ; Cellular Reprogramming ; DNA-Activated Protein Kinase/metabolism ; Epigenesis, Genetic ; Fibroblasts/pathology ; Holoenzymes/metabolism ; Humans ; Induced Pluripotent Stem Cells/metabolism/*pathology ; Lamin Type A ; Microfilament Proteins/analysis ; Models, Biological ; Muscle, Smooth, Vascular/pathology ; Nuclear Envelope/pathology ; Nuclear Proteins/analysis/genetics/metabolism ; Phenotype ; Progeria/genetics/pathology/physiopathology ; Protein Precursors/analysis/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-19
    Description: Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Guang-Hui -- Qu, Jing -- Suzuki, Keiichiro -- Nivet, Emmanuel -- Li, Mo -- Montserrat, Nuria -- Yi, Fei -- Xu, Xiuling -- Ruiz, Sergio -- Zhang, Weiqi -- Wagner, Ulrich -- Kim, Audrey -- Ren, Bing -- Li, Ying -- Goebl, April -- Kim, Jessica -- Soligalla, Rupa Devi -- Dubova, Ilir -- Thompson, James -- Yates, John 3rd -- Esteban, Concepcion Rodriguez -- Sancho-Martinez, Ignacio -- Izpisua Belmonte, Juan Carlos -- ES017166/ES/NIEHS NIH HHS/ -- GTB07001/Telethon/Italy -- P41 RR011823/RR/NCRR NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- England -- Nature. 2012 Nov 22;491(7425):603-7. doi: 10.1038/nature11557. Epub 2012 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ghliu@ibp.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23075850" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; Cell Differentiation ; Cell Division ; Cell Line ; Clone Cells/metabolism/pathology ; Embryonic Stem Cells/metabolism/pathology ; Gene Knock-In Techniques ; Humans ; Induced Pluripotent Stem Cells/metabolism/pathology ; Mutant Proteins/genetics/*metabolism ; Mutation ; Neural Stem Cells/metabolism/*pathology ; Nuclear Envelope/genetics/pathology ; Parkinson Disease/*pathology ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/*genetics/*metabolism ; Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-02
    Description: Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1alpha and nuclear lamina-heterochromatin anchoring protein LAP2beta. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Weiqi -- Li, Jingyi -- Suzuki, Keiichiro -- Qu, Jing -- Wang, Ping -- Zhou, Junzhi -- Liu, Xiaomeng -- Ren, Ruotong -- Xu, Xiuling -- Ocampo, Alejandro -- Yuan, Tingting -- Yang, Jiping -- Li, Ying -- Shi, Liang -- Guan, Dee -- Pan, Huize -- Duan, Shunlei -- Ding, Zhichao -- Li, Mo -- Yi, Fei -- Bai, Ruijun -- Wang, Yayu -- Chen, Chang -- Yang, Fuquan -- Li, Xiaoyu -- Wang, Zimei -- Aizawa, Emi -- Goebl, April -- Soligalla, Rupa Devi -- Reddy, Pradeep -- Esteban, Concepcion Rodriguez -- Tang, Fuchou -- Liu, Guang-Hui -- Belmonte, Juan Carlos Izpisua -- F32 AG047770/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1160-3. doi: 10.1126/science.aaa1356. Epub 2015 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Diagnosis and Treatment Center for Oral Disease, the 306th Hospital of the PLA, Beijing, China. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; College of Life Sciences, Peking University, Beijing 100871, China. ; The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Universidad Catolica San Antonio de Murcia, Campus de los Jeronimos s/n, 30107 Guadalupe, Murcia, Spain. ; Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China. Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Beijing Institute for Brain Disorders, Beijing 100069, China. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ghliu@ibp.ac.cn tangfuchou@pku.edu.cn belmonte@salk.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931448" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*metabolism ; Animals ; *Cell Aging ; Cell Differentiation ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; DNA-Binding Proteins/metabolism ; Epigenesis, Genetic ; Exodeoxyribonucleases/genetics/*metabolism ; Gene Knockout Techniques ; HEK293 Cells ; Heterochromatin/chemistry/*metabolism ; Humans ; Membrane Proteins/metabolism ; Mesenchymal Stromal Cells/*metabolism ; Methyltransferases/genetics/metabolism ; Mice ; Models, Biological ; RecQ Helicases/genetics/*metabolism ; Repressor Proteins/genetics/metabolism ; Werner Syndrome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-03
    Description: Palladium nanoparticles supported on layered double hydroxides (PdNPs/LDHs) were prepared via a green route employing Pine needle extract (PNE) as a reducing and capping agent. The prepared PdNPs/LDHs were characterized by XRD, TEM, EDS, N 2 -adsorption analysis. The PdNPs with an average size of 1.75 nm are uniformly dispersed on the LDHs surface. It exhibits high catalytic activity toward the Suzuki coupling reaction with only 0.05 mol% of the catalyst. And the catalyst could be reused for 8 times without an obvious loss of activity.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 4984-4986 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We experimentally investigated the magnetic phase transition of the in-plane magnetized double-layer Fe on W(100). This epitaxial system approximates the theoretical two-dimensional (2D) XY model to a large extent because of its pseudomorphic growth and structural stability. We measured the magnetization of W(100)/Fe in the vicinity of the Curie temperature TC using the diffraction of spin polarized electrons and the magnetization of W(100)/Fe/Ag in a wider temperature interval using conversion electron Mössbauer spectroscopy. The temperature dependence of the spontaneous magnetization follows a power law with an exponent β=0.22±0.03 in the temperature regime 0.3≤T/TC≤0.99. The susceptibility χ(T(approximately-greater-than)TC) can be fitted alternatively by a power law with an unusually large exponent γ≈5 or by an exponential law χ∝exp(b/(square root of)T−TC), as predicted for the 2D XY model, with b=1.6. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Talanta 32 (1985), S. 1113-1117 
    ISSN: 0039-9140
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...